
Package index
-
GR_crit() - Gelman-Rubin criterion for convergence
-
JointAI-packageJointAI - JointAI: Joint Analysis and Imputation of Incomplete Data
-
JointAIObject - Fitted object of class 'JointAI'
-
MC_error()plot(<MCElist>) - Calculate and plot the Monte Carlo error
-
NHANES - National Health and Nutrition Examination Survey (NHANES) Data
-
PBC - PBC data
-
add_samples() - Continue sampling from an object of class JointAI
-
auto_corr()auto_corr_plot() - Autocorrelation of MCMC samples
-
clean_survname() - Convert a survival outcome to a model name
-
cross_corr()cross_corr_plot() - Cross-correlation of MCMC samples
-
default_hyperpars() - Get the default values for hyper-parameters
-
densplot() - Plot the posterior density from object of class JointAI
-
extract_state() - Return the current state of a 'JointAI' model
-
get_MIdat() - Extract multiple imputed datasets from an object of class JointAI
-
get_missinfo() - Obtain a summary of the missing values involved in an object of class JointAI
-
internal_clean_survname() - Convert a survival outcome to a model name
-
list_models() - List model details
-
longDF - Longitudinal example dataset
-
md_pattern() - Missing data pattern
-
lm_imp()glm_imp()clm_imp()lognorm_imp()betareg_imp()mlogit_imp()lme_imp()lmer_imp()glme_imp()glmer_imp()betamm_imp()lognormmm_imp()clmm_imp()mlogitmm_imp()survreg_imp()coxph_imp()JM_imp() - Joint Analysis and Imputation of incomplete data
-
parameters() - Parameter names of an JointAI object
-
plot(<JointAI>) - Plot an object object inheriting from class 'JointAI'
-
plot_all() - Visualize the distribution of all variables in the dataset
-
plot_imp_distr() - Plot the distribution of observed and imputed values
-
predict(<JointAI>) - Predict values from an object of class JointAI
-
rd_vcov() - Extract the random effects variance covariance matrix
-
residuals(<JointAI>) - Extract residuals from an object of class JointAI
-
set_refcat() - Specify reference categories for all categorical covariates in the model
-
sharedParams - Parameters used by several functions in JointAI
-
simLongsimWide - Simulated Longitudinal Data in Long and Wide Format
-
sum_duration() - Calculate the sum of the computational duration of a JointAI object
-
print(<Dmat>)summary(<JointAI>)print(<summary.JointAI>)coef(<JointAI>)confint(<JointAI>)print(<JointAI>) - Summarize the results from an object of class JointAI
-
traceplot() - Create traceplots for a MCMC sample
-
wideDF - Cross-sectional example dataset