Calculate, print and plot the Monte Carlo error of the samples from a 'JointAI' model, combining the samples from all MCMC chains.
MC_error(x, subset = NULL, exclude_chains = NULL, start = NULL, end = NULL, thin = NULL, digits = 2, warn = TRUE, mess = TRUE, ...) # S3 method for MCElist plot(x, data_scale = TRUE, plotpars = NULL, ablinepars = list(v = 0.05), minlength = 20, ...)
| x | object inheriting from class 'JointAI' |
|---|---|
| subset | subset of parameters/variables/nodes (columns in the MCMC
sample). Follows the same principle as the argument
|
| exclude_chains | optional vector of the index numbers of chains that should be excluded |
| start | the first iteration of interest
(see |
| end | the last iteration of interest
(see |
| thin | thinning interval (integer; see |
| digits | number of digits for the printed output |
| warn | logical; should warnings be given? Default is
|
| mess | logical; should messages be given? Default is
|
| ... | Arguments passed on to
|
| data_scale | logical; show the Monte Carlo error of the sample
transformed back to the scale of the data ( |
| plotpars | optional; list of parameters passed to
|
| ablinepars | optional; list of parameters passed to
|
| minlength | number of characters the variable names are abbreviated to |
An object of class MCElist with elements unscaled,
scaled and digits. The first two are matrices with
columns est (posterior mean), MCSE (Monte Carlo error),
SD (posterior standard deviation) and MCSE/SD
(Monte Carlo error divided by post. standard deviation.)
plot: plot Monte Carlo error
Lesaffre & Lawson (2012; p. 195) suggest the Monte Carlo error of a parameter should not be more than 5% of the posterior standard deviation of this parameter (i.e., \(MCSE/SD \le 0.05\)).
Long variable names:
The default plot margins may not be wide enough when variable names are
longer than a few characters. The plot margin can be adjusted (globally)
using the argument "mar" in par.
Lesaffre, E., & Lawson, A. B. (2012). Bayesian Biostatistics. John Wiley & Sons.
The vignette
Parameter Selection
provides some examples how to specify the argument subset.
#> est MCSE SD MCSE/SD #> (Intercept) 38.705 1.4511 25.13 0.058 #> C1 -28.963 1.0131 17.55 0.058 #> C2 0.949 0.0372 0.64 0.058 #> M22 -0.421 0.0650 0.72 0.090 #> M23 0.042 0.0391 0.68 0.057 #> M24 -1.173 0.0385 0.67 0.058 #> sigma_y 2.236 0.0091 0.16 0.058