This function continues the sampling from the MCMC chains of an existing
object of class 'JointAI'.
Usage
add_samples(object, n.iter, add = TRUE, thin = NULL,
monitor_params = NULL, progress.bar = "text", mess = TRUE)Arguments
- object
object inheriting from class 'JointAI'
- n.iter
the number of additional iterations of the MCMC chain
- add
logical; should the new MCMC samples be added to the existing samples (
TRUE; default) or replace them? If samples are added the argumentsmonitor_paramsandthinare ignored.- thin
thinning interval (see
window.mcmc); ignored whenadd = TRUE.- monitor_params
named list or vector specifying which parameters should be monitored. For details, see
*_impand the vignette Parameter Selection. Ignored whenadd = TRUE.- progress.bar
character string specifying the type of progress bar. Possible values are "text" (default), "gui", and "none" (see
update). Note: when sampling is performed in parallel it is not possible to display a progress bar.- mess
logical; should messages be given? Default is
TRUE.
See also
The vignette
Parameter Selection
contains some examples on how to specify the argument monitor_params.
Examples
# Example 1:
# Run an initial JointAI model:
mod <- lm_imp(y ~ C1 + C2, data = wideDF, n.iter = 100)
# Continue sampling:
mod_add <- add_samples(mod, n.iter = 200, add = TRUE)
# Example 2:
# Continue sampling, but additionally sample imputed values.
# Note: Setting different parameters to monitor than in the original model
# requires add = FALSE.
imps <- add_samples(mod, n.iter = 200, monitor_params = c("imps" = TRUE),
add = FALSE)
