This function continues the sampling from the MCMC chains of an existing
object of class 'JointAI'.
add_samples(object, n.iter, add = TRUE, thin = NULL,
monitor_params = NULL, progress.bar = "text", mess = TRUE)
object inheriting from class 'JointAI'
the number of additional iterations of the MCMC chain
logical; should the new MCMC samples be added to the existing
samples (TRUE
; default) or replace them?
If samples are added the arguments monitor_params
and
thin
are ignored.
thinning interval (see window.mcmc
);
ignored when add = TRUE
.
named list or vector specifying which parameters should
be monitored. For details, see
*_imp
and the vignette
Parameter Selection.
Ignored when add = TRUE
.
character string specifying the type of
progress bar. Possible values are "text" (default), "gui",
and "none" (see update
). Note: when
sampling is performed in parallel it is not possible to
display a progress bar.
logical; should messages be given? Default is
TRUE
.
The vignette
Parameter Selection
contains some examples on how to specify the argument monitor_params
.
# Example 1:
# Run an initial JointAI model:
mod <- lm_imp(y ~ C1 + C2, data = wideDF, n.iter = 100)
# Continue sampling:
mod_add <- add_samples(mod, n.iter = 200, add = TRUE)
# Example 2:
# Continue sampling, but additionally sample imputed values.
# Note: Setting different parameters to monitor than in the original model
# requires add = FALSE.
imps <- add_samples(mod, n.iter = 200, monitor_params = c("imps" = TRUE),
add = FALSE)