This function continues the sampling from the MCMC chains of an existing
object of class 'JointAI'.
add_samples(object, n.iter, add = TRUE, thin = NULL, monitor_params = NULL, progress.bar = "text", mess = TRUE)
| object | object inheriting from class 'JointAI' |
|---|---|
| n.iter | the number of additional iterations of the MCMC chain |
| add | logical; should the new MCMC samples be added to the existing
samples ( |
| thin | thinning interval (see |
| monitor_params | named list or vector specifying which parameters should
be monitored. For details, see
|
| progress.bar | character string specifying the type of progress bar.
Possible values are "text", "gui", and "none" (see
|
| mess | logical; should messages be given? Default is
|
The vignette
Parameter Selection
contains some examples on how to specify the argument monitor_params.
# Example 1: # Run an initial JointAI model: mod <- lm_imp(y ~ C1 + C2, data = wideDF, n.iter = 100) # Continue sampling: mod_add <- add_samples(mod, n.iter = 200, add = TRUE) # Example 2: # Continue sampling, but additionally sample imputed values. # Note: Setting different parameters to monitor than in the original model # requires add = FALSE. imps <- add_samples(mod, n.iter = 200, monitor_params = c("imps" = TRUE), add = FALSE)