R/summary.JointAI.R
summary.JointAI.RdObtain and print the summary, (fixed effects) coefficients
(coef) and credible interval (confint) for an object of
class 'JointAI'.
# S3 method for JointAI summary(object, start = NULL, end = NULL, thin = NULL, quantiles = c(0.025, 0.975), subset = NULL, exclude_chains = NULL, outcome = NULL, missinfo = FALSE, warn = TRUE, mess = TRUE, ...) # S3 method for summary.JointAI print(x, digits = max(3, .Options$digits - 4), ...) # S3 method for JointAI coef(object, start = NULL, end = NULL, thin = NULL, subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...) # S3 method for JointAI confint(object, parm = NULL, level = 0.95, quantiles = NULL, start = NULL, end = NULL, thin = NULL, subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...) # S3 method for JointAI print(x, digits = max(4, getOption("digits") - 4), ...)
| object | object inheriting from class 'JointAI' |
|---|---|
| start | the first iteration of interest
(see |
| end | the last iteration of interest
(see |
| thin | thinning interval (integer; see |
| quantiles | posterior quantiles |
| subset | subset of parameters/variables/nodes (columns in the MCMC
sample). Follows the same principle as the argument
|
| exclude_chains | optional vector of the index numbers of chains that should be excluded |
| outcome | optional; vector identifying for which outcomes the summary should be given, either by specifying their indices, or their names (LHS of the respective model formulas as character string). |
| missinfo | logical; should information on the number and proportion of missing values be included in the summary? |
| warn | logical; should warnings be given? Default is
|
| mess | logical; should messages be given? Default is
|
| ... | currently not used |
| x | an object of class |
| digits | minimal number of significant digits, see
|
| parm | same as |
| level | confidence level (default is 0.95) |
The model fitting functions lm_imp,
glm_imp, clm_imp, lme_imp,
glme_imp, survreg_imp and
coxph_imp,
and the vignette
Parameter Selection
for examples how to specify the parameter subset.
#> #> Bayesian linear model fitted with JointAI #> #> Call: #> lm_imp(formula = y ~ C1 + C2 + M2, data = wideDF, n.iter = 100) #> #> #> Posterior summary: #> Mean SD 2.5% 97.5% tail-prob. GR-crit MCE/SD #> (Intercept) 37.6037 24.507 -11.124 85.1958 0.1333 1.090 0.0543 #> C1 -28.2447 17.107 -61.349 5.6636 0.1133 1.092 0.0542 #> C2 0.9333 0.651 -0.377 2.1183 0.1867 1.019 0.0654 #> M22 -0.3471 0.668 -1.645 0.9416 0.5867 1.002 0.0577 #> M23 0.0956 0.653 -1.139 1.3270 0.8933 1.047 0.0577 #> M24 -1.1150 0.661 -2.297 0.0627 0.0867 0.997 0.0577 #> #> Posterior summary of residual std. deviation: #> Mean SD 2.5% 97.5% GR-crit MCE/SD #> sigma_y 2.22 0.161 1.93 2.53 1.01 0.0577 #> #> #> MCMC settings: #> Iterations = 101:200 #> Sample size per chain = 100 #> Thinning interval = 1 #> Number of chains = 3 #> #> Number of observations: 100 #> #> #> Number and proportion of complete cases: #> # % #> lvlone 93 93 #> #> Number and proportion of missing values: #> # NA % NA #> y 0 0 #> C1 0 0 #> M2 3 3 #> C2 4 4 #>#> $y #> (Intercept) C1 C2 M22 M23 M24 #> 37.60368434 -28.24471802 0.93325237 -0.34711392 0.09557549 -1.11501623 #> sigma_y #> 2.21883372 #>#> $y #> 2.5% 97.5% #> (Intercept) -11.1236073 85.1958002 #> C1 -61.3494500 5.6635787 #> C2 -0.3768932 2.1182763 #> M22 -1.6449690 0.9415690 #> M23 -1.1386809 1.3270273 #> M24 -2.2967594 0.0626675 #> sigma_y 1.9343879 2.5266842 #>