Obtain and print the summary, (fixed effects) coefficients (coef) and credible interval (confint) for an object of class 'JointAI'.

# S3 method for JointAI
summary(object, start = NULL, end = NULL, thin = NULL,
  quantiles = c(0.025, 0.975), subset = NULL, exclude_chains = NULL,
  outcome = NULL, missinfo = FALSE, warn = TRUE, mess = TRUE, ...)

# S3 method for summary.JointAI
print(x, digits = max(3, .Options$digits - 4), ...)

# S3 method for JointAI
coef(object, start = NULL, end = NULL, thin = NULL,
  subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...)

# S3 method for JointAI
confint(object, parm = NULL, level = 0.95,
  quantiles = NULL, start = NULL, end = NULL, thin = NULL,
  subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...)

# S3 method for JointAI
print(x, digits = max(4, getOption("digits") - 4), ...)

Arguments

object

object inheriting from class 'JointAI'

start

the first iteration of interest (see window.mcmc)

end

the last iteration of interest (see window.mcmc)

thin

thinning interval (integer; see window.mcmc). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.

quantiles

posterior quantiles

subset

subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument monitor_params in *_imp.

exclude_chains

optional vector of the index numbers of chains that should be excluded

outcome

optional; vector identifying for which outcomes the summary should be given, either by specifying their indices, or their names (LHS of the respective model formulas as character string).

missinfo

logical; should information on the number and proportion of missing values be included in the summary?

warn

logical; should warnings be given? Default is TRUE.

mess

logical; should messages be given? Default is TRUE.

...

currently not used

x

an object of class summary.JointAI or JointAI

digits

minimal number of significant digits, see print.default.

parm

same as subset (for consistency with confint method for other types of objects)

level

confidence level (default is 0.95)

See also

The model fitting functions lm_imp, glm_imp, clm_imp, lme_imp, glme_imp, survreg_imp and coxph_imp, and the vignette Parameter Selection for examples how to specify the parameter subset.

Examples

mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100) summary(mod1, missinfo = TRUE)
#> #> Bayesian linear model fitted with JointAI #> #> Call: #> lm_imp(formula = y ~ C1 + C2 + M2, data = wideDF, n.iter = 100) #> #> #> Posterior summary: #> Mean SD 2.5% 97.5% tail-prob. GR-crit MCE/SD #> (Intercept) 37.6037 24.507 -11.124 85.1958 0.1333 1.090 0.0543 #> C1 -28.2447 17.107 -61.349 5.6636 0.1133 1.092 0.0542 #> C2 0.9333 0.651 -0.377 2.1183 0.1867 1.019 0.0654 #> M22 -0.3471 0.668 -1.645 0.9416 0.5867 1.002 0.0577 #> M23 0.0956 0.653 -1.139 1.3270 0.8933 1.047 0.0577 #> M24 -1.1150 0.661 -2.297 0.0627 0.0867 0.997 0.0577 #> #> Posterior summary of residual std. deviation: #> Mean SD 2.5% 97.5% GR-crit MCE/SD #> sigma_y 2.22 0.161 1.93 2.53 1.01 0.0577 #> #> #> MCMC settings: #> Iterations = 101:200 #> Sample size per chain = 100 #> Thinning interval = 1 #> Number of chains = 3 #> #> Number of observations: 100 #> #> #> Number and proportion of complete cases: #> # % #> lvlone 93 93 #> #> Number and proportion of missing values: #> # NA % NA #> y 0 0 #> C1 0 0 #> M2 3 3 #> C2 4 4 #>
coef(mod1)
#> $y #> (Intercept) C1 C2 M22 M23 M24 #> 37.60368434 -28.24471802 0.93325237 -0.34711392 0.09557549 -1.11501623 #> sigma_y #> 2.21883372 #>
confint(mod1)
#> $y #> 2.5% 97.5% #> (Intercept) -11.1236073 85.1958002 #> C1 -61.3494500 5.6635787 #> C2 -0.3768932 2.1182763 #> M22 -1.6449690 0.9415690 #> M23 -1.1386809 1.3270273 #> M24 -2.2967594 0.0626675 #> sigma_y 1.9343879 2.5266842 #>