Calculates the Gelman-Rubin criterion for convergence
(uses gelman.diag from package coda).
GR_crit(object, confidence = 0.95, transform = FALSE, autoburnin = TRUE, multivariate = TRUE, subset = NULL, exclude_chains = NULL, start = NULL, end = NULL, thin = NULL, warn = TRUE, mess = TRUE, ...)
| object | object inheriting from class 'JointAI' |
|---|---|
| confidence | the coverage probability of the confidence interval for the potential scale reduction factor |
| transform | a logical flag indicating whether variables in
|
| autoburnin | a logical flag indicating whether only the second half
of the series should be used in the computation. If set to TRUE
(default) and |
| multivariate | a logical flag indicating whether the multivariate potential scale reduction factor should be calculated for multivariate chains |
| subset | subset of parameters/variables/nodes (columns in the MCMC
sample). Follows the same principle as the argument
|
| exclude_chains | optional vector of the index numbers of chains that should be excluded |
| start | the first iteration of interest
(see |
| end | the last iteration of interest
(see |
| thin | thinning interval (integer; see |
| warn | logical; should warnings be given? Default is
|
| mess | logical; should messages be given? Default is
|
| ... | currently not used |
Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-511.
Brooks, SP. and Gelman, A. (1998) General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-455.
The vignette
Parameter Selection
contains some examples how to specify the argument subset.
#> Potential scale reduction factors: #> #> Point est. Upper C.I. #> (Intercept) 1.004 1.02 #> C1 1.003 1.02 #> C2 0.999 1.00 #> M22 1.005 1.01 #> M23 1.004 1.03 #> M24 1.003 1.02 #> sigma_y 1.001 1.00 #> #> Multivariate psrf #> #> 1.01