Returns the names of the parameters/nodes of an object of class 'JointAI' for which a monitor is set.
parameters(object, expand_ranef = FALSE, mess = TRUE, warn = TRUE, ...)
object inheriting from class 'JointAI'
logical; should all elements of the random effects vectors/matrices be shown separately?
logical; should messages be given? Default is
TRUE
.
logical; should warnings be given? Default is
TRUE
.
currently not used
# (This function does not need MCMC samples to work, so we will set
# n.adapt = 0 and n.iter = 0 to reduce computational time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0,
n.iter = 0, mess = FALSE)
#> Warning:
#> It is currently not possible to use “contr.poly” for incomplete
#> categorical covariates. I will use “contr.treatment” instead. You can
#> specify (globally) which types of contrasts are used by changing
#> “options('contrasts')”.
parameters(mod1)
#>
#> Note: “mod1” does not contain MCMC samples.
#> outcome outcat varname coef
#> 1 y <NA> (Intercept) beta[1]
#> 2 y <NA> C1 beta[2]
#> 3 y <NA> C2 beta[3]
#> 4 y <NA> M22 beta[4]
#> 5 y <NA> M23 beta[5]
#> 6 y <NA> M24 beta[6]
#> 7 y <NA> O22 beta[7]
#> 8 y <NA> O23 beta[8]
#> 9 y <NA> O24 beta[9]
#> 10 y <NA> B21 beta[10]
#> 11 y <NA> <NA> sigma_y