Returns the names of the parameters/nodes of an object of class 'JointAI' for which a monitor is set.

parameters(object, expand_ranef = FALSE, mess = TRUE, warn = TRUE, ...)

Arguments

object

object inheriting from class 'JointAI'

expand_ranef

logical; should all elements of the random effects vectors/matrices be shown separately?

mess

logical; should messages be given? Default is TRUE.

warn

logical; should warnings be given? Default is TRUE.

...

currently not used

Examples

# (This function does not need MCMC samples to work, so we will set
# n.adapt = 0 and n.iter = 0 to reduce computational time)
mod1 <- lm_imp(y ~ C1 + C2 + M2 + O2 + B2, data = wideDF, n.adapt = 0,
               n.iter = 0, mess = FALSE)
#> Warning: 
#> It is currently not possible to use “contr.poly” for incomplete
#> categorical covariates. I will use “contr.treatment” instead.  You can
#> specify (globally) which types of contrasts are used by changing
#> “options('contrasts')”.

parameters(mod1)
#> 
#> Note: “mod1” does not contain MCMC samples.
#>    outcome outcat     varname     coef
#> 1        y   <NA> (Intercept)  beta[1]
#> 2        y   <NA>          C1  beta[2]
#> 3        y   <NA>          C2  beta[3]
#> 4        y   <NA>         M22  beta[4]
#> 5        y   <NA>         M23  beta[5]
#> 6        y   <NA>         M24  beta[6]
#> 7        y   <NA>         O22  beta[7]
#> 8        y   <NA>         O23  beta[8]
#> 9        y   <NA>         O24  beta[9]
#> 10       y   <NA>         B21 beta[10]
#> 11       y   <NA>        <NA>  sigma_y