Build a data.frame for prediction, where one variable varies and all
other variables are set to the reference value (median for continuous
variables).
predDF(object, ...) # S3 method for JointAI predDF(object, vars, length = 100L, ...) # S3 method for formula predDF(object, data, vars, length = 100L, ...)
| object | object inheriting from class 'JointAI' |
|---|---|
| ... | optional specification of the values used for some (or all) of the
variables given in |
| vars | name of variable that should be varying |
| length | number of values used in the sequence when |
| data | a |
# fit a JointAI model mod <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100) # generate a data frame with varying "C2" and reference values for all other # variables in the model newDF <- predDF(mod, vars = ~ C2) head(newDF)#> y C1 C2 M2 #> 1 -3.183137 1.434298 -0.9226220 1 #> 2 -3.183137 1.434298 -0.9046136 1 #> 3 -3.183137 1.434298 -0.8866052 1 #> 4 -3.183137 1.434298 -0.8685968 1 #> 5 -3.183137 1.434298 -0.8505885 1 #> 6 -3.183137 1.434298 -0.8325801 1newDF2 <- predDF(mod, vars = ~ C2 + M2, C2 = seq(-0.5, 0.5, 0.25), M2 = levels(wideDF$M2)[2:3]) newDF2#> y C1 C2 M2 #> 1 -3.183137 1.434298 -0.50 2 #> 2 -3.183137 1.434298 -0.25 2 #> 3 -3.183137 1.434298 0.00 2 #> 4 -3.183137 1.434298 0.25 2 #> 5 -3.183137 1.434298 0.50 2 #> 6 -3.183137 1.434298 -0.50 3 #> 7 -3.183137 1.434298 -0.25 3 #> 8 -3.183137 1.434298 0.00 3 #> 9 -3.183137 1.434298 0.25 3 #> 10 -3.183137 1.434298 0.50 3