This function obtains the autocorrelation of the MCMC samples in an JointAI object via coda::autocorr.diag(). autocorr_plot() visualizes the results using ggplot2.

autocorr(object, lags = 0:30, by_chain = TRUE, outcome = 1L,
  start = NULL, end = NULL, thin = NULL)

autocorr_plot(object, lags = 0:30, by_chain = TRUE, outcome = 1L,
  start = NULL, end = NULL, thin = NULL)

Arguments

object

an object of class JointAI

lags

a numeric vector indicating the lags to consider

by_chain

logical; should the autocorrelation be computed for each chain separately?

outcome

integer; index of the outcome model for which the autocorrelation should be plotted

start

the first iteration of interest (see window.mcmc)

end

the last iteration of interest (see window.mcmc)

thin

thinning interval (integer; see window.mcmc). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.

Value

a matrix or a list of matrix objects if by_chain = TRUE, or a ggplot() object for autocorr_plot().

Examples

fit <- lm_imp(y ~ C1 + C2 + B2, data = wideDF, n.iter = 200)
autocorr(fit)
#> [[1]]
#>        (Intercept)           C1            C2          B21      sigma_y
#> Lag 0   1.00000000  1.000000000  1.000000e+00  1.000000000  1.000000000
#> Lag 1   0.05755243  0.050820294  3.756552e-02  0.226834297 -0.006804047
#> Lag 2  -0.02025947 -0.031472084 -7.897606e-02 -0.037219861  0.028898605
#> Lag 3   0.04804338  0.045738380  5.589996e-02 -0.063739573  0.072417278
#> Lag 4   0.13391859  0.137270186 -7.255127e-03  0.005919024  0.013201160
#> Lag 5   0.04303189  0.044911218 -4.206872e-02  0.043508105  0.006212061
#> Lag 6  -0.03546460 -0.033305227 -7.217218e-02 -0.064403392 -0.003317680
#> Lag 7  -0.11019494 -0.106028952 -2.926658e-02 -0.044129385 -0.049512304
#> Lag 8  -0.05202430 -0.048203968 -3.277551e-02 -0.070206398  0.038439710
#> Lag 9  -0.08466595 -0.083732236 -3.269115e-02 -0.033338521 -0.010223730
#> Lag 10  0.03873113  0.041721698  9.698288e-02  0.081953314  0.024691163
#> Lag 11  0.06043596  0.060387399 -6.540813e-02 -0.059040466  0.071502994
#> Lag 12 -0.12034562 -0.113780861 -4.304709e-02 -0.062217045 -0.094471533
#> Lag 13 -0.03713618 -0.036543367 -3.863756e-02 -0.049006428  0.113580588
#> Lag 14 -0.08402861 -0.081613148  5.066313e-04 -0.001572557  0.045040696
#> Lag 15  0.00150724  0.004426657 -5.308215e-02 -0.030047407 -0.032101961
#> Lag 16 -0.08603353 -0.077321989 -1.021146e-01 -0.039753223  0.067147183
#> Lag 17 -0.09004598 -0.088340813  3.930568e-02 -0.030005032  0.060990848
#> Lag 18 -0.12480277 -0.122612278 -5.915694e-03  0.002793837 -0.067920521
#> Lag 19 -0.06109688 -0.057573708 -4.060788e-02  0.060642620 -0.026355059
#> Lag 20 -0.01387767 -0.014552167 -4.792409e-02 -0.024249734 -0.092519525
#> Lag 21  0.03206049  0.026913994 -9.671087e-02  0.045969622  0.041059490
#> Lag 22 -0.07788495 -0.075653586  3.488143e-03  0.044988649 -0.027453810
#> Lag 23 -0.01594933 -0.017807495 -2.679172e-02 -0.013149375  0.002295111
#> Lag 24  0.01337430  0.007584237 -7.128519e-02  0.031047628  0.043560720
#> Lag 25 -0.03027483 -0.034607201  7.031406e-02 -0.055863602 -0.003201316
#> Lag 26  0.07212163  0.069201551 -4.945389e-02 -0.013574070 -0.021524005
#> Lag 27 -0.02946073 -0.030928610 -6.635837e-03 -0.008811811 -0.016754856
#> Lag 28  0.01559392  0.012577269  5.552863e-02  0.061498865  0.034515667
#> Lag 29 -0.04962813 -0.043441962  7.674072e-05  0.081582188 -0.090326106
#> Lag 30 -0.03730159 -0.037237996  8.036176e-02 -0.037304549  0.012539161
#> 
#> [[2]]
#>         (Intercept)           C1           C2          B21       sigma_y
#> Lag 0   1.000000000  1.000000000  1.000000000  1.000000000  1.0000000000
#> Lag 1  -0.019740098 -0.012427058  0.029908697  0.194658863 -0.0227375791
#> Lag 2   0.120446675  0.120355409  0.005894786  0.068727911  0.1080124856
#> Lag 3   0.015484332  0.011077442  0.067756372  0.104583718  0.0391141910
#> Lag 4   0.050779941  0.049558679  0.025635370  0.004425067  0.0757994246
#> Lag 5   0.046971797  0.040778515  0.088464925  0.072673538  0.0461585973
#> Lag 6   0.033889110  0.033782123 -0.001118678 -0.015644120  0.0992883665
#> Lag 7   0.069657496  0.063456016  0.004163519 -0.007789816 -0.0066858580
#> Lag 8   0.023871684  0.023503264 -0.015363696  0.011346772  0.0412523420
#> Lag 9   0.077937604  0.081467060 -0.093501091  0.069663200  0.0502151890
#> Lag 10  0.096610141  0.098926853 -0.018128884  0.035308599  0.0270826554
#> Lag 11 -0.049438086 -0.043739604 -0.030781362  0.043501614 -0.0756562609
#> Lag 12  0.013543088  0.012666030 -0.184421584  0.134024058 -0.0388223542
#> Lag 13  0.070734468  0.076302128 -0.152341651  0.150256079  0.0085753022
#> Lag 14  0.030438410  0.036946811 -0.070972586  0.011843349 -0.0609383839
#> Lag 15 -0.061066182 -0.061536944 -0.092904907 -0.010738658  0.0094905168
#> Lag 16  0.038952291  0.040858942 -0.037258645 -0.021922086  0.0142656290
#> Lag 17 -0.013278761 -0.012817618 -0.099805235 -0.002264757  0.0189245330
#> Lag 18 -0.057440248 -0.059607911  0.058275130 -0.072827651  0.0087218004
#> Lag 19 -0.050456749 -0.049307247  0.081596420 -0.007550529  0.1010834464
#> Lag 20 -0.058525036 -0.062518588  0.044965910 -0.023699934  0.0005149525
#> Lag 21  0.020002549  0.014163732  0.016601316  0.001172543  0.1031723032
#> Lag 22 -0.043579256 -0.044749998  0.083146226  0.090169425  0.0704046269
#> Lag 23  0.006611782  0.005196749  0.076302815  0.058834623  0.0434546826
#> Lag 24  0.054127201  0.054424835  0.029765680  0.025267514 -0.1127090513
#> Lag 25  0.001586515  0.006796942 -0.049072204  0.040707816  0.0105356222
#> Lag 26  0.119628250  0.126573460  0.180196010  0.023770904 -0.0036814032
#> Lag 27 -0.091906843 -0.089342152  0.091027469  0.063048842  0.0714664899
#> Lag 28 -0.078619534 -0.080418165 -0.097399072  0.001558722 -0.0044720652
#> Lag 29 -0.089930859 -0.093515980  0.156171076 -0.017805517  0.0375294418
#> Lag 30  0.024191015  0.019995536 -0.004348521  0.020504248  0.0849211096
#> 
#> [[3]]
#>         (Intercept)           C1           C2          B21      sigma_y
#> Lag 0   1.000000000  1.000000000  1.000000000  1.000000000  1.000000000
#> Lag 1   0.061254841  0.057837132 -0.018666598  0.116164650 -0.049627035
#> Lag 2  -0.056231842 -0.056056556 -0.073815566  0.047997554 -0.006715518
#> Lag 3  -0.015855310 -0.015386718  0.009664979 -0.053985023 -0.159093759
#> Lag 4   0.109451383  0.110139430  0.035799412 -0.026400646 -0.067344787
#> Lag 5  -0.123681285 -0.125211501  0.087787224  0.027382750  0.034552446
#> Lag 6  -0.112610097 -0.114205618  0.029256412 -0.065741126 -0.027669903
#> Lag 7  -0.102518915 -0.096553543  0.046353978 -0.056190421 -0.067884265
#> Lag 8  -0.062662799 -0.061499989 -0.047664559 -0.015162182 -0.003526558
#> Lag 9  -0.131154688 -0.133424942 -0.098793837 -0.048103016 -0.077515914
#> Lag 10 -0.052926385 -0.053095842  0.012814802  0.126554315  0.102645130
#> Lag 11 -0.045841883 -0.045668775 -0.047254390 -0.004212952  0.045371072
#> Lag 12 -0.065826085 -0.058330927  0.022240060 -0.123937624 -0.086051074
#> Lag 13 -0.033080676 -0.033347252 -0.073948896 -0.120303064 -0.003293376
#> Lag 14 -0.004043234 -0.002561476 -0.083568924 -0.003101728 -0.018221753
#> Lag 15  0.027369115  0.024958992  0.056629828  0.025934254  0.017255194
#> Lag 16 -0.077137280 -0.083738157  0.017104458 -0.129389406 -0.027770439
#> Lag 17  0.072785850  0.075355725  0.076242904 -0.067630426  0.040417704
#> Lag 18 -0.014157127 -0.009230301  0.130929099 -0.037571371 -0.011498258
#> Lag 19  0.022338407  0.020788950 -0.056713903  0.076101027  0.008801872
#> Lag 20  0.073026369  0.073534647 -0.008546205  0.040737288 -0.091368130
#> Lag 21  0.195815029  0.195318151 -0.061553732 -0.041475736  0.112088186
#> Lag 22  0.043752046  0.041745514  0.089733633 -0.074527315  0.046467398
#> Lag 23 -0.008627478 -0.009897513  0.090674849 -0.139901114 -0.001404039
#> Lag 24  0.056270440  0.051996140 -0.131969575 -0.006068668  0.080450720
#> Lag 25  0.052522688  0.056646989  0.018875623  0.013062035  0.076051545
#> Lag 26 -0.186726469 -0.190552343  0.007247816 -0.137628238 -0.047863208
#> Lag 27 -0.092789381 -0.093945907 -0.012607898  0.066118231  0.031869286
#> Lag 28 -0.006418210 -0.006833088 -0.003506696 -0.019798683 -0.100755111
#> Lag 29  0.013879174  0.015987949  0.018394497  0.102542372  0.022093499
#> Lag 30 -0.084100267 -0.085696728  0.070975061  0.079915840  0.002033005
#> 
autocorr_plot(fit)