class: center, middle, inverse, title-slide # Bayesian
Imputation of
Missing Covariates ###
Nicole S. Erler
June 12, 2019
--- class: mychapter # <span style="color:#593661">Bayesian<br>Imputation of</span><br>Missing Covariates <script defer src="https://use.fontawesome.com/releases/v5.8.2/js/all.js" integrity="sha384-DJ25uNYET2XCl5ZF++U8eNxPWqcKohUUBUpKGlNLMchM7q4Wjg2CUpjHLaL8yYPH" crossorigin="anonymous"> </script> <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.8.2/css/all.css"> <!-- <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.8.2/css/v4-shims.css"> --> <!-- <script defer src="https://use.fontawesome.com/releases/v5.8.2/js/all.js"></script> --> <!-- <script defer src="https://use.fontawesome.com/releases/v5.8.2/js/v4-shims.js"></script> --> ??? Thank you __Sir Rector__, dear __committee members__, __colleagues__, __family__ and __friends__. I'd like to **thank you** all for being here today and would like to **take this opportunity** to give you an **overview** of the **research that forms my doctoral dissertation**. Bayesian Imputation of Missing Covariates What is that? <hr> Let's start with the __motivation of my research__: Missing Covariates --- # Missing Covariates <div class="wrapper"> <div class="box-out"> <div min-width="100%"> <span class="fas fa-baby"></span> </div> <br> <div min-width="100%"> <span class="fas fa-weight"></span> <span class="fas fa-ruler-vertical"></span> </div> </div> <div class="box-expo"> <span class="fas fa-cubes" min-width="100%"></span><br> <div min-width="100%"> <span class="fas fa-glass-whiskey"></span> <span class="fas fa-coffee"></span> </div> </div> <div class="box-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> ??? Say, we want to investigate if there is an <br> **association** between * the **amount of sugar-containing beverages** that a mother consumes during pregnancy * and the **body composition of her child** after birth. Since this will **typically be measured in an uncontrolled environment**, many other **factors can influence** this association. --- class: animated, fadeIn # Missing Covariates <div class="wrapper"> <div class="box-out"> <div min-width="100%"> <span class="fas fa-baby"></span> </div> <br> <div min-width="100%"> <span class="fas fa-weight"></span> <span class="fas fa-ruler-vertical"></span> </div> </div> <div class="box-expo"> <span class="fas fa-cubes" min-width="100%"></span><br> <div min-width="100%"> <span class="fas fa-glass-whiskey"></span> <span class="fas fa-coffee"></span> </div> </div> <div class="box-arrow"> <img src="index_files/arrow_wave.svg" style="width:690px"> </div> <div class="box-cov1"> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </div> <div class="box-cov2"> <i class = "fas fa-tv"></i> </div> <div class="box-cov3"> <i class="fas fa-graduation-cap"></i> </div> <div class="box-cov4"> <i class="fas fa-euro-sign"></i> </div> <div class="box-arrdown1"> <i class="fas fa-long-arrow-alt-down"></i> </div> <div class="box-arrdown2"> <i class="fas fa-long-arrow-alt-down"></i> </div> <div class="box-arrup1"> <i class="fas fa-long-arrow-alt-up"></i> </div> <div class="box-arrup2"> <i class="fas fa-long-arrow-alt-up"></i> </div> </div> ??? For example: - whether the child plays __sports__ regularly, - how much time it spends watching __television__ or in front of a computer, or - the __household income__ and the __educational level__ of the parents as proxies for their socio-economic status --- class: animated, fadeIn # Missing Covariates <div class="wrapper"> <div class="box-out"> <div min-width="100%"> <span class="fas fa-baby"></span> </div> <br> <div min-width="100%"> <span class="fas fa-weight"></span> <span class="fas fa-ruler-vertical"></span> </div> </div> <div class="bbox-expo"> <span class="fas fa-cubes" min-width="100%"></span><br> <div min-width="100%"> <span class="fas fa-glass-whiskey"></span> <span class="fas fa-coffee"></span> </div> </div> <div class="box-arrow"> <img src="index_files/arrow_wave.svg" style="width:690px"> </div> <div class="bbox-cov1"> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </div> <div class="bbox-cov2"> <i class = "fas fa-tv"></i> </div> <div class="bbox-cov3"> <i class="fas fa-graduation-cap"></i> </div> <div class="bbox-cov4"> <i class="fas fa-euro-sign"></i> </div> <div class="box-arrdown1"> <i class="fas fa-long-arrow-alt-down"></i> </div> <div class="box-arrdown2"> <i class="fas fa-long-arrow-alt-down"></i> </div> <div class="box-arrup1"> <i class="fas fa-long-arrow-alt-up"></i> </div> <div class="box-arrup2"> <i class="fas fa-long-arrow-alt-up"></i> </div> </div> ??? In this example, child body composition is the __outcome__ and all other variables are called __"covariates"__. --- class: animated, fadeIn # Missing Covariates <div class="row"> <div class="column"> <table style="color: #472050; font-size: 36px; border-spacing: 15px 40px;"> <tr> <td style="text-align:center"> <i class="far fa-list-alt"></i> </td> <td>questionnaire</td> </tr> <tr> <td style="text-align:center"> <i class="fas fa-phone"></i> </td> <td> phone interview </td> </tr> <tr> <td style="text-align:center"> <i class="far fa-hospital"></i> </td> <td>visit to the research centre</td> </tr> </table> </div> <div class="column"> </div> </div> ??? In observational studies, variables are often measured using * **questionnaires** that participants have to fill in at home and return by mail, or * by **interviews**, for example over the **phone**. * In other cases, participants have to **visit the research center** where **physical measurements** are taken. --- class: animated, fadeIn # Missing Covariates <div class="row"> <div class="column"> <table style="color: #472050; font-size: 36px; border-spacing: 15px 40px;"> <tr> <td style="text-align:center"> <i class="far fa-list-alt"></i> </td> <td>questionnaire</td> </tr> <tr> <td style="text-align:center"> <i class="fas fa-phone"></i> </td> <td> phone interview </td> </tr> <tr> <td style="text-align:center"> <i class="far fa-hospital"></i> </td> <td>visit to the research centre</td> </tr> </table> </div> <div class="column"> <table style="color: #472050; font-size: 36px; border-spacing: 15px; padding:5px"> <tr> <td style="text-align:center"> <img src="index_files/skip_question.png" alt=""></img> </td> <td>skip a question</td> </tr> <tr> <td style="text-align:center"> <img src="index_files/lost_in_mail.png" alt=""></img> </td> <td> lost in mail </td> </tr> <tr> <td style="text-align:center"> <img src="index_files/refuse_measurement.png" alt=""></img> </td> <td>refuse measurement</td> </tr> <tr> <td style="text-align:center"> <img src="index_files/miss_visit.png" alt=""></img> </td> <td>miss a visit</td> </tr> </table> </div> </div> ??? It can happen that when filling in a questionnaire * participants skip a question. * Maybe they __can not recall__, for instance, how much their __weight was before pregnancy__, or * they may __feel uncomfortable__ answering questions __about their income or alcohol consumption__. * In other cases, the __whole questionnaire__ is not returned or may get lost in the mail. * Sometimes, participants **do not give consent** for a particular measurement, for example, if blood has to be taken. * It is also possible that participants __miss a scheduled appointment__. --- class: animated, fadeIn # Missing Covariates <div> <table id = 'dattable'> <tr> <th style="background-color:white;"></th> <th><i class = "fas fa-euro-sign"></i></th> <th><i class = "fas fa-tv"></i></th> <th><i class = "fas fa-graduation-cap"></i></th> <th><i class = "fas fa-running"></i></th> <th><i class = "fas fa-weight"></i></th> <th><i class = "fas fa-glass-whiskey"></i></th> <th><i class = "fas fa-smoking"></i></th> <th><i class="fas fa-glass-cheers"></i></th> <th><i class="fas fa-ellipsis-h" style="color:#907996"></i></th> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="fas fa-check"></i></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td><i class="fas fa-ellipsis-v" style="color:#b5a5b9"></i></td> <td></td> </tr> </table> </div> ??? The __consequence__ is that some **values are missing** from the resulting database. The most common approach to work with such incomplete data is to **fill in values for the missing observations**. --- class: mychapter, animated, fadeIn # <span style="color:#593661">Bayesian<br></span>Imputation<span style="color:#593661"> of<br>Missing Covariates</span> ??? This is called __imputation__. An **important concept** in imputation is that we can **learn from the observed data** to be able to make **good guesses about the missing values**. --- class: animated, fadeIn # Imputation <div class="grid-container2"> <div class="grid-item-table"> <table id = 'dattable2b'> <tr> <th style="background-color:white;"></th> <th><i class = "fas fa-smoking"></i></th> <th><i class = "fas fa-graduation-cap"></i></th> <th><i class = "fas fa-glass-cheers"></i></th> <th><i class = "fas fa-glass-whiskey"></i></th> <th><i class = "fas fa-euro-sign"></i></th> <th><i class="fas fa-ellipsis-h" style="color:#907996"></i></th> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3000</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td >2900</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;line-height:0.01;"> </td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2500</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;"> </td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> </table> </div> <div class="grid-item" style="height:210px;"> </div> <div class="grid-item" style="height:210px;"> </div> <div class="grid-item-minitab"></div> <div class="grid-item"> </div> <div class="grid-item"> </div> </div> ??? When, for instance, we want to __impute missing values in the variable income__, we can **learn how income is associated with all the other variables** from those participants for whom income is observed. --- class: animated, fadeIn # Imputation <div class="grid-container2"> <div class="grid-item-table"> <table id = 'dattable2b'> <tr> <th style="background-color:white;"></th> <th><i class = "fas fa-smoking"></i></th> <th><i class = "fas fa-graduation-cap"></i></th> <th><i class = "fas fa-glass-cheers"></i></th> <th><i class = "fas fa-glass-whiskey"></i></th> <th><i class = "fas fa-euro-sign"></i></th> <th><i class="fas fa-ellipsis-h" style="color:#907996"></i></th> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3000</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td >2900</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;line-height:0.01;"> </td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2500</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;"> </td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> </table> </div> <div class="grid-item" style="height:210px;"> <i class="fas fa-long-arrow-alt-right fa-3x"></i> </div> <div class="grid-item" style="height:210px;"> <img src = 'index_files/income_distr.png' style="width:400px;height:200px"></img> </div> <div class="grid-item-minitab"></div> <div class="grid-item"> </div> <div class="grid-item"> </div> </div> ??? This allows us to **determine a distribution**<br> that describes for any given set of values for the other variables<br> which values of income are more or less likely. --- class: animated, fadeIn # Imputation <div class="grid-container2"> <div class="grid-item-table"> <table id = 'dattable2b'> <tr> <th style="background-color:white;"></th> <th><i class = "fas fa-smoking"></i></th> <th><i class = "fas fa-graduation-cap"></i></th> <th><i class = "fas fa-glass-cheers"></i></th> <th><i class = "fas fa-glass-whiskey"></i></th> <th><i class = "fas fa-euro-sign"></i></th> <th><i class="fas fa-ellipsis-h" style="color:#907996"></i></th> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3000</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td >2900</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;line-height:0.01;"> </td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2500</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;"> </td> </tr> <tr> <td style = "background-color:white;line-height:1.7;"> </td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> </tr> </table> </div> <div class="grid-item" style="height:210px;"> <i class="fas fa-long-arrow-alt-right fa-3x"></i> </div> <div class="grid-item" style="height:210px;"> <img src = 'index_files/income_distr.png' style="width:400px;height:200px"></img> </div> <div class="grid-item-minitab"> <table id = 'dattable2b'> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> </table> <!-- <i class="fas fa-long-arrow-alt-down fa-3x" style="position:relative; left:93px;"></i> --> </div> <div class="grid-item"> </div> <div class="grid-item" style="height:150px;"> <!-- <table id = 'dattable2' style="margin-left:85px;margin-right:5px;"> --> <!-- <tr><th><i class = "fas fa-euro-sign"></i></th> </tr> --> <!-- <tr><td style="font-weight:bold;"> 3282 </td></tr> --> <!-- <tr><td style="font-weight:bold;"> 3160 </td></tr> --> <!-- </table> --> </div> </div> ??? For example, for * **smoking** mothers * with a **university degree** * who did not drink **alcohol** during pregnancy * and had on average **three glasses** of sugar-containing beverages per day, the **most likely values for income** might be around 3000 Euros. --- class: animated, fadeIn # Imputation <div class="grid-container2"> <div class="grid-item-table"> <table id = 'dattable2b'> <tr> <th style="background-color:white;"></th> <th><i class = "fas fa-smoking"></i></th> <th><i class = "fas fa-graduation-cap"></i></th> <th><i class = "fas fa-glass-cheers"></i></th> <th><i class = "fas fa-glass-whiskey"></i></th> <th><i class = "fas fa-euro-sign"></i></th> <th><i class="fas fa-ellipsis-h" style="color:#907996"></i></th> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3000</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td >2900</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;line-height:0.01;"> </td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2500</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;"> </td> </tr> <tr> <td style = "background-color:white;line-height:1.7;"> </td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> </tr> </table> </div> <div class="grid-item" style="height:210px;"> <i class="fas fa-long-arrow-alt-right fa-3x"></i> </div> <div class="grid-item" style="height:210px;"> <img src = 'index_files/income_distr.png' style="width:400px;height:200px"></img> </div> <div class="grid-item-minitab"> <table id = 'dattable2b'> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> </table> <i class="fas fa-long-arrow-alt-down fa-3x" style="position:relative; left:93px;"></i> </div> <div class="grid-item"> </div> <div class="grid-item" style="height:150px;"> <table id = 'dattable2' style="margin-left:85px;margin-right:5px;"> <tr><th><i class = "fas fa-euro-sign"></i></th> </tr> <tr><td style="font-weight:bold;"> 3282 </td></tr> <!-- <tr><td style="font-weight:bold;"> 3160 </td></tr> --> </table> </div> </div> ??? We can then **draw a value** from this distribution to **replace the missing observation**. --- class: animated, fadeIn # Multiple Imputation <div class="grid-container2"> <div class="grid-item-table"> <table id = 'dattable2b'> <tr> <th style="background-color:white;"></th> <th><i class = "fas fa-smoking"></i></th> <th><i class = "fas fa-graduation-cap"></i></th> <th><i class = "fas fa-glass-cheers"></i></th> <th><i class = "fas fa-glass-whiskey"></i></th> <th><i class = "fas fa-euro-sign"></i></th> <th><i class="fas fa-ellipsis-h" style="color:#907996"></i></th> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3000</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td >2900</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class = "fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td>3300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;line-height:0.01;"> </td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2300</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><img src='index_files/nosmoke.png' style="width:50px;"></img></td> <td><i class="fas fa-school"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink2.png' style="width:50px;"></img></td> <td>2500</td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> <tr> <td style="background-color:white;"> </td> </tr> <tr> <td style = "background-color:white;line-height:1.7;"> </td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> <td style = "background-color:white"></td> </tr> </table> </div> <div class="grid-item" style="height:210px;"> <i class="fas fa-long-arrow-alt-right fa-3x"></i> </div> <div class="grid-item" style="height:210px;"> <img src = 'index_files/income_distr.png' style="width:400px;height:200px"></img> </div> <div class="grid-item-minitab"> <table id = 'dattable2b'> <tr> <td style = "background-color:white"><i class="fas fa-user" style="color:#472050;"></i></td> <td><i class="fas fa-smoking"></i></td> <td><i class="fas fa-university"></i></td> <td><img src='index_files/nodrink.png' style="width:50px;"></img></td> <td><img src='index_files/drink3.png' style="width:50px;"></img></td> <td><i class="far fa-question-circle"></i></td> <td><i class="fas fa-ellipsis-h" style="color:#b5a5b9"></i></td> </tr> </table> <i class="fas fa-long-arrow-alt-down fa-3x" style="position:relative; left:50px;transform: rotate(30deg);"></i> <i class="fas fa-long-arrow-alt-down fa-3x" style="position:relative; left:63px;"></i> <i class="fas fa-long-arrow-alt-down fa-3x" style="position:relative; left:76px;transform: rotate(-30deg);"></i> </div> <div class="grid-item"> </div> <div class="grid-item" style="height:150px;"> <table id = 'dattable2' style="margin-left:80px;"> <tr><th><i class = "fas fa-euro-sign"></i></th> </tr> <tr><td style="font-weight:bold;"> 3171 </td></tr> <!-- <tr><td style="font-weight:bold;"> 2883 </td></tr> --> </table> <table id = 'dattable2' style="margin-left:5px;margin-right:5px;"> <tr><th><i class = "fas fa-euro-sign"></i></th> </tr> <tr><td style="font-weight:bold;"> 3282 </td></tr> <!-- <tr><td style="font-weight:bold;"> 3160 </td></tr> --> </table> <table id = 'dattable2'> <tr><th><i class = "fas fa-euro-sign"></i></th> </tr> <tr><td style="font-weight:bold;"> 2878 </td></tr> <!-- <tr><td style="font-weight:bold;"> 2954 </td></tr> --> </table> </div> </div> ??? To better represent the __uncertainty about the imputed values__ it is common to **repeat** the imputation multiple times to obtain multiple sets of imputed values. This is called **Multiple Imputation** and is the current gold standard to deal with missing values in covariates. The **idea**, that **missing values** have a **distribution** that depends on the other variables,<br> **fits very naturally into the Bayesian framework**. --- class: mychapter, animated, fadeIn # Bayesian<br><span style="color:#593661">Imputation of<br>Missing Covariates</span> ??? The framework of "Bayesian" statistics is **named after Thomas Bayes**<br> who was one of the first to write down his **thoughts** about how **observed data** can be used to **gain information** about the underlying **cause of that data**. Let's look at an example. --- class: animated, fadeIn # Bayesian <center> <img src='index_files/Euro.jpg' style="width:450px;"></img> </center> ??? Say, I want to determine the **probability to obtain "heads"** in a coin toss. **Before** starting the experiment, I already have an **expectation** of what the **result** might be. --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src='index_files/Euro.jpg' style="width:450px;"></img> </div> <div class = 'column'> <img src="index_files/p_fair.png" style="width:500px;"><img> </div> </div> ??? For a **regular 1 Euro** coin, I expect the probability for "heads" to be **fairly close to 50%**<br> and would expect values **below 40%** or **above 60%** as very **unlikely**. --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src='index_files/OldCoin2.jpg' style="width:450px;"></img> </div> <div class = 'column'> <img src='index_files/p_unif.png' style="width:500px;"></img> </div> </div> <!-- https://www.flickr.com/photos/99850702@N04/34401197316/ --> ??? If, however, my coin was a **very old coin**, my prior **assumption** about the probability of "heads" might be **very different**: I might expect that **anything can happen**, and would say **all values** between zero and 100% are **equally likely**. --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src="index_files/cointoss_1.png" style="width:450px;"></img> </div> <div class = "column"> <img src = "index_files/pp1_unif.png" style="width:500px;"></img> </div> </div> ??? When I now **start the experiment**, I will **gain information** about the probability for "heads" with every coin toss ... --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src="index_files/cointoss_2.png" style="width:450px;"></img> </div> <div class = "column"> <img src = "index_files/pp2_unif.png" style="width:500px;"></img> </div> </div> ??? ... and my **belief about that probability will be adapted**. --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src="index_files/cointoss_3.png" style="width:450px;"></img> </div> <div class = "column"> <img src = "index_files/pp3_unif.png" style="width:500px;"></img> </div> </div> ??? The more often I toss the coin, the **more certain** I become about the probability of obtaining 'heads'. --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src="index_files/cointoss_10.png" style="width:450px;"></img> </div> <div class = "column"> <img src = "index_files/pp10_unif.png" style="width:500px;"></img> </div> </div> ??? The more often I toss the coin, the **more certain** I become about the probability of obtaining 'heads'. --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src="index_files/cointoss_50.png" style="width:450px;"></img> </div> <div class = "column"> <img src = "index_files/pp50_unif.png" style="width:500px;"></img> </div> </div> ??? The more often I toss the coin, the **more certain** I become about the probability of obtaining 'heads'. --- class: animated, fadeIn # Bayesian <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:45%;"> <img src="index_files/cointoss_100.png" style="width:450px;"></img> </div> <div class = "column"> <img src = "index_files/pp100_unif.png" style="width:500px;"></img> </div> </div> ??? The more often I toss the coin, the **more certain** I become about the probability of obtaining 'heads'. --- class: animated, fadeIn # Bayesian Analysis <!-- curly arrow --> <div class="wrapper"> <div class="box-out"> <div min-width="100%"> <span class="fas fa-baby"></span> </div> <br> <div min-width="100%"> <span class="fas fa-weight"></span> <span class="fas fa-ruler-vertical"></span> </div> </div> <div class="box-expo"> <span class="fas fa-cubes" min-width="100%"></span><br> <div min-width="100%"> <span class="fas fa-glass-whiskey"></span> <span class="fas fa-coffee"></span> </div> </div> <div class="box-arrow"> <img src="index_files/arrow_wave.svg" style="width:690px"> </div> <div class="box-cov1"> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </div> <div class="box-cov2"> <i class = "fas fa-tv"></i> </div> <div class="box-cov3"> <i class="fas fa-graduation-cap"></i> </div> <div class="box-cov4"> <i class="fas fa-euro-sign"></i> </div> <div class="box-arrdown1"> <i class="fas fa-long-arrow-alt-down"></i> </div> <div class="box-arrdown2"> <i class="fas fa-long-arrow-alt-down"></i> </div> <div class="box-arrup1"> <i class="fas fa-long-arrow-alt-up"></i> </div> <div class="box-arrup2"> <i class="fas fa-long-arrow-alt-up"></i> </div> </div> ??? How does this **apply** to my initial question about the association between sugar-containing beverages and body composition? --- class: animated, fadeIn # Bayesian Analysis <!-- curly arrow with distributions --> <div class="wrapper"> <div class="box-out"> <div min-width="100%"> <span class="fas fa-baby"></span> </div> <br> <div min-width="100%"> <span class="fas fa-weight"></span> <span class="fas fa-ruler-vertical"></span> </div> </div> <div class="box-expo"> <span class="fas fa-cubes" min-width="100%"></span><br> <div min-width="100%"> <span class="fas fa-glass-whiskey"></span> <span class="fas fa-coffee"></span> </div> </div> <div class="box-arrow"> <img src = "index_files/ploticon.png" style="width:100px; position:relative; top:40%"></img> <img src="index_files/arrow_wave.svg" style="width:690px; position:relative; right:19%"> </div> <div class="box-cov1"> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </div> <div class="box-cov2"> <i class = "fas fa-tv"></i> </div> <div class="box-cov3"> <i class="fas fa-graduation-cap"></i> </div> <div class="box-cov4"> <i class="fas fa-euro-sign"></i> </div> <div class="box-arrdown1"> <i class="fas fa-long-arrow-alt-down" style="position:relative; left:30%"></i> <img src = "index_files/ploticon.png" style="width:100px; position:relative; left:30%"></img> </div> <div class="box-arrdown2"> <i class="fas fa-long-arrow-alt-down" style="position:relative; left:30%"></i> <img src = "index_files/ploticon.png" style="width:100px; position:relative; left:30%"></img> </div> <div class="box-arrup1"> <img src = "index_files/ploticon.png" style="width:100px; position:relative; right:30%"></img> <i class="fas fa-long-arrow-alt-up" style="position:relative; right:30%"></i> </div> <div class="box-arrup2"> <img src = "index_files/ploticon.png" style="width:100px; position:relative; right:30%"></img> <i class="fas fa-long-arrow-alt-up" style="position:relative; right:30%"></i> </div> </div> ??? When we **analyse our research question** in the **Bayesian framework**,<br> all the associations, indicated by the **arrows in this figure**, <br> are **estimated** the way I demonstrated it using the **coin experiment**. Throughout this dissertation we **followed the example of the old coin** rather than the 1 Euro coin,<br> meaning that **before having seen any data** we did **not have a strong belief** about what those **associations would be**. The **observation** of each of the mother-child pairs allowed us to **learn more** about the **strengths of each of the associations**. <!-- posterior distribution, the distribution that helps us to quantify --> <!-- which values for the strength of the association are most likely and which values are less likely. --> --- class: animated, fadeIn # Bayesian Analysis <!-- curly arrow with distributions and dashed lines --> <div class="wrapper"> <div class="box-out"> <div min-width="100%"> <span class="fas fa-baby"></span> </div> <br> <div min-width="100%"> <span class="fas fa-weight"></span> <span class="fas fa-ruler-vertical"></span> </div> </div> <div class="bbox-expo"> <span class="fas fa-cubes" min-width="100%"></span><br> <div min-width="100%"> <span class="fas fa-glass-whiskey"></span> <span class="fas fa-coffee"></span> </div> </div> <div class="box-arrow"> <img src = "index_files/ploticon.png" style="width:100px; position:relative; top:40%"></img> <img src="index_files/arrow_wave.svg" style="width:690px; position:relative; right:19%"> </div> <div class="bbox-cov1"> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </div> <div class="bbox-cov2"> <i class = "fas fa-tv"></i> </div> <div class="bbox-cov3"> <i class="fas fa-graduation-cap"></i> </div> <div class="bbox-cov4"> <i class="fas fa-euro-sign"></i> </div> <div class="box-arrdown1"> <i class="fas fa-long-arrow-alt-down" style="position:relative; left:30%"></i> <img src = "index_files/ploticon.png" style="width:100px; position:relative; left:30%"></img> </div> <div class="box-arrdown2"> <i class="fas fa-long-arrow-alt-down" style="position:relative; left:30%"></i> <img src = "index_files/ploticon.png" style="width:100px; position:relative; left:30%"></img> </div> <div class="box-arrup1"> <img src = "index_files/ploticon.png" style="width:100px; position:relative; right:30%"></img> <i class="fas fa-long-arrow-alt-up" style="position:relative; right:30%"></i> </div> <div class="box-arrup2"> <img src = "index_files/ploticon.png" style="width:100px; position:relative; right:30%"></img> <i class="fas fa-long-arrow-alt-up" style="position:relative; right:30%"></i> </div> </div> ??? This **concept of having distributions** for the strengths of the associations is very **similar to** what we I've shown you earlier for the **missing covariate values**, where we had a **distribution** telling us which values are **more likely than others**. And this is why the **Bayesian framework lends itself very naturally to dealing with missing values**. --- class: animated, fadeIn # Bayesian Analysis and Imputation <!-- with added imputation distributions --> <div class="wrapper2"> <div class="box2-out" style="margin-top:-20px; style="margin-bottom:-30px;""> <div min-width="100%"> <span class="fas fa-baby"></span> </div> <br> <div min-width="100%"> <span class="fas fa-weight"></span> <span class="fas fa-ruler-vertical"></span> </div> </div> <div class="bbox2-expo" style="margin-top:-20px; style="margin-bottom:-30px;""> <div style="width:100%;text-align: center;"> <img src = "index_files/ploticon.png" style="width:50px;"></img> </div> <span class="fas fa-cubes" min-width="100%"></span> <br> <div min-width="100%"> <span class="fas fa-glass-whiskey"></span> <span class="fas fa-coffee"></span> </div> </div> <div class="box2-arrow" style="margin-bottom:-20px;margin-top:-20px;"> <img src = "index_files/ploticon.png" style="width:80px; position:relative; top:45%;"></img> <img src = "index_files/arrow_wave.svg" style="width:690px; position:relative; right:16%;"></img> </div> <div class="bbox2-cov1"> <div style="width:100%;text-align: center; margin-bottom:-10px;"> <img src = "index_files/ploticon.png" style="width:50px;"></img> </div> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </div> <div class="bbox2-cov2"> <i class = "fas fa-tv"></i> <div style="width:100%;text-align: center; margin-bottom:-10px;"> <img src = "index_files/ploticon.png" style="width:50px;"></img> </div> </div> <div class="bbox2-cov3"> <div style="width:100%;text-align: center; margin-bottom:-10px;"> <img src = "index_files/ploticon.png" style="width:50px;"></img> </div> <i class="fas fa-graduation-cap"></i> </div> <div class="bbox2-cov4"> <i class="fas fa-euro-sign"></i> <div style="width:100%;text-align: center; margin-bottom:-10px;"> <img src = "index_files/ploticon.png" style="width:50px;"></img> </div> </div> <div class="box2-arrdown1" style="margin-bottom:-20px;"> <i class="fas fa-long-arrow-alt-down" style="position:relative; left:30%"></i> <img src = "index_files/ploticon.png" style="width:80px; position:relative; left:30%"></img> </div> <div class="box2-arrdown2" style="margin-bottom:-20px;"> <i class="fas fa-long-arrow-alt-down" style="position:relative; left:30%"></i> <img src = "index_files/ploticon.png" style="width:80px; position:relative; left:30%"></img> </div> <div class="box2-arrup1" style="margin-top:-10px;"> <img src = "index_files/ploticon.png" style="width:80px; position:relative; right:30%;"></img> <i class="fas fa-long-arrow-alt-up" style="position:relative; right:30%"></i> </div> <div class="box2-arrup2" style="margin-top:-10px;"> <img src = "index_files/ploticon.png" style="width:80px; position:relative; right:30%"></img> <i class="fas fa-long-arrow-alt-up" style="position:relative; right:30%"></i> </div> <!-- <div class="box2-covdist1"> --> <!-- <img src = "index_files/ploticon.png" style="width:80px;"></img> --> <!-- </div> --> <!-- <div class="box2-covdist2"> --> <!-- <img src = "index_files/ploticon.png" style="width:80px;"></img> --> <!-- </div> --> <!-- <div class="box2-covdist3"> --> <!-- <img src = "index_files/ploticon.png" style="width:80px;"></img> --> <!-- </div> --> <!-- <div class="box2-covdist4"> --> <!-- <img src = "index_files/ploticon.png" style="width:80px;"></img> --> <!-- </div> --> <!-- <div class="box2-expodist"> --> <!-- <img src = "index_files/ploticon.png" style="width:80px;"></img> --> <!-- </div> --> </div> ??? As with the association between variables<br> we could have an **expectation** of what **likely values** for the missing observations are **before having seen any data**. The **observation of data** then allows us to **update our belief** about **which values are most likely**. **Contrary to the concept of multiple imputation**,<br> where the **imputation** of missing values is done **separately** from the **analysis** of the data,<br> in the **Bayesian framework** **imputation** and **analysis** are performed **simultaneously**. --- class: animated, fadeIn # Bayesian Analysis and Imputation <center> <table id='seq'> <tr> <td style="text-align:center; width:60px;"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> </table> </center> ??? Specifically, in the **Bayesian approach** applied **in my research**, besides the **model used to answer the research question**, ... --- class: animated, fadeIn # Bayesian Analysis and Imputation <center> <table id='seq'> <tr> <td style="text-align:center; width:60px;"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> </table> </center> ??? ... a **model** is specified **for each incomplete covariate**. --- class: animated, fadeIn # Bayesian Analysis and Imputation <center> <table id='seq'> <tr> <td style="text-align:center; width:60px;"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> </td> </tr> </table> </center> --- class: animated, fadeIn # Bayesian Analysis and Imputation <center> <table id='seq'> <tr> <td style="text-align:center;width:60px;"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </td> </table> </center> --- class: animated, fadeIn # Bayesian Analysis and Imputation <center> <table id='seq'> <tr> <td style="text-align:center; width:60px;"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> </td> </tr> </table> </center> --- class: animated, fadeIn # Bayesian Analysis and Imputation <center> <table id='seq'> <tr> <td style="text-align:center; width:60px;"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class="fas fa-tv"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class="fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> </tr> </table> </center> ??? The models are specified in a **sequential manner**... ... so that **all variables**, observed and unobserved, **and their relationships** are **described**. <!-- <div class = 'row'> --> <!-- <div class = 'column' style="width:45%;"> --> <!-- <table id='seq'> --> <!-- <tr> --> <!-- <td style="text-align:center; width:60px;"> --> <!-- <i class="fas fa-weight"></i> --> <!-- </td> --> <!-- <td> --> <!-- <i class="fas fa-long-arrow-alt-left"></i> --> <!-- </td> --> <!-- <td> --> <!-- <i class="fas fa-glass-whiskey"></i> --> <!-- <i class="fas fa-running"></i> --> <!-- <i class="fas fa-volleyball-ball"></i> --> <!-- <i class="fas fa-tv"></i> --> <!-- <i class="fas fa-graduation-cap"></i> --> <!-- <i class="fas fa-euro-sign"></i> --> <!-- </td> --> <!-- </tr> --> <!-- <tr> --> <!-- <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> --> <!-- <td><i class="fas fa-long-arrow-alt-left"></i></td> --> <!-- <td><i class="fas fa-glass-whiskey"></i> --> <!-- <i class="fas fa-running"></i> --> <!-- <i class="fas fa-volleyball-ball"></i> --> <!-- <i class="fas fa-tv"></i> --> <!-- <i class="fas fa-graduation-cap"></i> --> <!-- </td> --> <!-- </tr> --> <!-- <tr> --> <!-- <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> --> <!-- <td><i class="fas fa-long-arrow-alt-left"></i></td> --> <!-- <td><i class="fas fa-glass-whiskey"></i> --> <!-- <i class="fas fa-running"></i> --> <!-- <i class="fas fa-volleyball-ball"></i> --> <!-- <i class="fas fa-tv"></i> --> <!-- </td> --> <!-- </tr> --> <!-- <tr> --> <!-- <td style="text-align:center"><i class = "fas fa-tv"></i></td> --> <!-- <td><i class="fas fa-long-arrow-alt-left"></i></td> --> <!-- <td><i class="fas fa-glass-whiskey"></i> --> <!-- <i class="fas fa-running"></i> --> <!-- <i class="fas fa-volleyball-ball"></i> --> <!-- </td> --> <!-- </tr> --> <!-- <tr> --> <!-- <td style="text-align:center"><i class="fas fa-volleyball-ball"></i></td> --> <!-- <td><i class="fas fa-long-arrow-alt-left"></i></td> --> <!-- <td><i class="fas fa-glass-whiskey"></i> --> <!-- <i class = "fas fa-running"></i> --> <!-- </td> --> <!-- </tr> --> <!-- <tr> --> <!-- <td style="text-align:center"><i class = "fas fa-running"></i></td> --> <!-- <td><i class="fas fa-long-arrow-alt-left"></i></td> --> <!-- <td><i class="fas fa-glass-whiskey"></i></td> --> <!-- </tr> --> <!-- </table> --> <!-- </div> --> <!-- <div class = 'column' style="width:54%;"> --> <!-- <center> --> <!-- </center> --> <!-- </div> --> <!-- </div> --> <!-- and together specify the joint distribution of all variables and associations. --> <!-- <div style="color:red;"> do I even need this part???</div> --> <hr> I would now like to **highlight** the content of **some of the chapters of my dissertation**. --- class: mychapter, animated, fadeIn # Chapter 2<br><br>Imputation in<br>Longitudinal Settings ??? Chapter 2 deals with **imputation in longitudinal settings**. --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/pregnancy_purple.svg" style="width:65px;"></img> <span class="fas fa-weight"></span> </div> <div class="box-ch2-expo" style="height:100px;"> <i class="fas fa-apple-alt" style="position:relative; top:18px"></i> <i class="fas fa-carrot" style="position:relative; bottom:8px; left:3px"></i> <i class="fas fa-fish" style="position:relative; right:10px; top:15px"></i> <i class="fas fa-pizza-slice" style="position:relative; top:5px; left:4px"></i> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> ??? This research was motivated by the question if **diet** and **weight** during pregnancy are associated. --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/pregnancy_purple.svg" style="width:65px;"></img> <span class="fas fa-weight"></span> </div> <div class="box-ch2-expo" style="height:100px;"> <i class="fas fa-apple-alt" style="position:relative; top:18px"></i> <i class="fas fa-carrot" style="position:relative; bottom:8px; left:3px"></i> <i class="fas fa-fish" style="position:relative; right:10px; top:15px"></i> <i class="fas fa-pizza-slice" style="position:relative; top:5px; left:4px"></i> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <center> <img src="index_files/weight_plot1.png" style="width:450px"></img> </center> ??? The **particular challenge** is that gestational weight was **measured repeatedly throughout pregnancy**. --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class = "row"> <div class = "column"> <center> <h3 style="text-color:#472050"> Bayesian approach<br> </h3> </center> </div> <div class = "column"> <center> <h3 style="text-color:#472050"> Multiple Imputation using<br>Fully Conditional Specification</h3> </center> </div> </div> ??? In this chapter, we **compare** the **Bayesian approach**<br> to the **current gold standard ** for multiple imputation:<br> **Multiple Imputation using a Fully Conditional Specification**. This approach is also called **multiple imputation using chained equations**, or short, **MICE**. An **important difference** between the two approaches is **how** the **models** for incomplete variables **are specified**. --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class = "row"> <div class = "column"> <center> <h3 style="text-color:#472050"> Bayesian approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> </tr> </table> </center> </div> <div class = "column"> <center> <h3 style="text-color:#472050"> Multiple Imputation using<br>Fully Conditional Specification</h3> </center> </div> </div> ??? While in the Bayesian approach **models** for the **outcome** and **all incomplete covariates** are specified **in the sequence** I've shown you before, ... --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class = "row"> <div class = "column"> <center> <h3 style="text-color:#472050"> Bayesian approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> </tr> </table> </center> </div> <div class = "column"> <center> <h3 style="text-color:#472050"> Multiple Imputation using<br>Fully Conditional Specification</h3> <table id='mice' style="font-size:40px;"> <tr> <td style="width:50px;"></td> <td></td> <td></td> <td style="line-height:1.3;"> </td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class="fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> </table> </center> </div> ??? ... in the **multiple imputation approach** models are specified **only for the incomplete covariates**... ...and **each of the models** uses information from **all other variables**, including the **outcome**. This **works well** when the **outcome**, maternal weight in our example, is **measured only once**. --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class = "row"> <div class = "column"> <center> <h3 style="text-color:#472050"> Bayesian approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i> </td> <td> <i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> </tr> </table> </center> </div> <div class = "column"> <center> <h3 style="text-color:#472050"> Multiple Imputation using<br>Fully Conditional Specification</h3> <table id='mice' style="font-size:40px;"> <tr> <td style="width:50px;"></td> <td></td> <td></td> <td style="line-height:1.3;"> </td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class="fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> <td style="width:50px;"><i class="fas fa-weight"></i></td> </tr> </table> </center> </div> ??? It could even still work if we had **multiple measurements** of weight, as long as all women had the **same number** of measurements and measured at the **same time**. --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/pregnancy_purple.svg" style="width:65px;"></img> <span class="fas fa-weight"></span> </div> <div class="box-ch2-expo" style="height:100px;"> <i class="fas fa-apple-alt" style="position:relative; top:18px"></i> <i class="fas fa-carrot" style="position:relative; bottom:8px; left:3px"></i> <i class="fas fa-fish" style="position:relative; right:10px; top:15px"></i> <i class="fas fa-pizza-slice" style="position:relative; top:5px; left:4px"></i> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <center> <img src="index_files/weight_plot2.png" style="width:450px"></img> </center> ??? However, in our data, the **weight measurements** are **unbalanced**,<br> meaning that * they are obtained at **different time-points** and, * **because** some women **entered** the study **late** or **missed visits**, * we do not have the **same number** of weight **measurements** for everybody. --- class: animated, fadeIn # Imputation in Longitudinal Settings <!-- background-color:#472050;color:#ece8ed; --> <div class = "row"> <div class = "column"> <center> <h3 style="text-color:#472050"> Bayesian approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center; background-color:#472050;color:#ece8ed;"> <i class="fas fa-weight"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td> <i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-euro-sign"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> <i class = "fas fa-tv"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> <i class="fas fa-volleyball-ball"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i> <i class = "fas fa-running"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> </tr> </table> </center> </div> <div class = "column"> <center> <h3 style="text-color:#472050"> Multiple Imputation using<br>Fully Conditional Specification</h3> <table id='mice' style="font-size:40px;"> <tr> <td></td> <td></td> <td></td> <td style="line-height:1.3;"> </td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td><i class="fas fa-euro-sign"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td style="background-color:#472050;color:#ece8ed;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="background-color:#472050;color:#ece8ed;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class = "fas fa-tv"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class="fas fa-running"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="background-color:#472050;color:#ece8ed;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class="fas fa-running"></i></td> <td><i class="fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="background-color:#472050;color:#ece8ed;"><i class="fas fa-weight"></i></td> </tr> <tr> <td><i class = "fas fa-running"></i></td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 20px;"></i></td> <td><i class="fas fa-glass-whiskey"></i></td> <td><i class="fas fa-volleyball-ball"></i></td> <td><i class="fas fa-tv"></i></td> <td><i class="fas fa-graduation-cap"></i></td> <td><i class="fas fa-euro-sign"></i></td> <td style="background-color:#472050;color:#ece8ed;"><i class="fas fa-weight"></i></td> </tr> </table> </center> </div> ??? In the **Bayesian approach**,<br> weight is used **only on the left-hand side** of the **analysis model**,<br> where such **unbalanced data** can be **handled quite easily**. Using the **fully conditional specification**,<br> however, maternal weight is used as a **covariate in the imputation models**,<br> and there, **unbalanced measurements are a problem**. **Summaries** or **simplifications** of the repeated measurements of weight are **needed**. --- class: animated, fadeIn # Imputation in Longitudinal Settings <div class = "row"> <div class = "column"> <center> <h3> Bayesian approach<br> </h3> <div class = 'mybox' style="display: inline-block;width:300px;"> <div class = "row"> <div class = "column" style="width:90px;position:relative; top:5px;"> <i class="far fa-smile fa-2x"></i> </div> <div class = "column" style="width:200px;text-align:left;"> unbiased results </div> </div> </div> </center> </div> <div class = "column"> <center> <h3> Multiple Imputation using<br>Fully Conditional Specification</h3> <div class = 'mybox' style="display:inline-block;"> <div class = "row"> <div class = "column" style="width:90px;position:relative; top:5px;"> <i class="far fa-frown fa-2x"></i> </div> <div class = "column" style="width:250px;text-align:left;"> potentially<br>biased results </div> </div> </div> </center> </div> </div> ??? In summary, we found that * the **Bayesian approach** can provide **unbiased results** in longitudinal settings * Multiple Imputation using a fully conditional specification will produce **biased results** when * missingness is related to the outcome, and * **relevant information** gets lost when a **summary** of a longitudinal outcome **is used** --- class: mychapter, animated, fadeIn # Chapter 5<br><br>Imputation with<br>Time-Varying Covariates ??? In Chapter 5 we **extend the Bayesian approach** to settings with **time-varying covariates**. --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/preg_pb_purple.png" style="width:65px;"></img> <!-- <img src="index_files/blood-pressure_purple.svg" style="width:50px;"></img> --> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <div class="wrapper" style="margin-top:100px;"> <div class="box-ch2-out"> <img src="index_files/child_weight_purple.png" style="width:65px;"></img> <!-- <i class="fas fa-baby"></i> --> <!-- <span class="fas fa-weight"></span> --> <span class="fas fa-ruler-vertical"></span> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> ??? This **extension was motivated** by two research questions: - Is **maternal weight** associated with **maternal blood pressure**?, and - Is **maternal weight** associated with **child BMI**? --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/preg_pb_purple.png" style="width:65px;"></img> <!-- <img src="index_files/blood-pressure_purple.svg" style="width:50px;"></img> --> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <center> <img src = "index_files/BP_plot0.png" style="width:400px; position:absolute;bottom:5%;left:33%"></img> </center> <!-- <div>Icons made by <a href="https://www.flaticon.com/authors/google" title="Google">Google</a> from <a href="https://www.flaticon.com/" title="Flaticon">www.flaticon.com</a> is licensed by <a href="http://creativecommons.org/licenses/by/3.0/" title="Creative Commons BY 3.0" target="_blank">CC 3.0 BY</a></div> --> ??? In the first question, * **blood pressure** and **weight** were both **measured repeatedly** during pregnancy, and * both measurements were always obtained **at the same time points**. --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/preg_pb_purple.png" style="width:65px;"></img> <!-- <img src="index_files/blood-pressure_purple.svg" style="width:50px;"></img> --> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <center> <img src = "index_files/BP_plot1.png" style="width:400px; position:absolute;bottom:5%;left:33%"></img> </center> ??? The **difficulty** here is that * there may **not only be an effect** of **weight on blood pressure**, ... --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/preg_pb_purple.png" style="width:65px;"></img> <!-- <img src="index_files/blood-pressure_purple.svg" style="width:50px;"></img> --> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <center> <img src = "index_files/BP_plot2.png" style="width:400px; position:absolute;bottom:5%;left:33%"></img> </center> ??? ... but at the same time, **blood pressure may affect gestational weight**. --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/preg_pb_purple.png" style="width:65px;"></img> <!-- <img src="index_files/blood-pressure_purple.svg" style="width:50px;"></img> --> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <div class = 'endobox'> endogenous covariate </div> <center> <img src = "index_files/BP_plot2.png" style="width:400px; position:absolute;bottom:5%;left:33%"></img> </center> ??? In this setting, weight is therefore called an **endogenous covariate**. Since we had seen previously that<br> multiple imputation using a **fully conditional specification** may have **problems in longitudinal data**, in this chapter we compared the Bayesian approach to a **different way of creating multiple imputations** called **Joint Model multiple imputation**. --- class: animated, fadeIn # Time-Varying Covariates <div class = 'row'> <div class = 'column' style="width:45%"> <center> <h3>Bayesian Approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <img src="index_files/blood-pressure.svg" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding: 5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-weight"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table> </center> </div> <div class = 'column' style="width:55%"> <center> <h3>Joint Model<br>Multiple Imputation</h3> <table id='seq' style="font-size:40px; border-collapse: collapse;"> <colgroup> <col> <col> <col span="2"> </colgroup> <tr> <td style="text-align:center"> <img src="index_files/blood-pressure.svg" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table></center> </div> </div> ??? In joint model multiple imputation, * a model is specified for the **outcome**, in our case **blood pressure**, * the **time-varying covariates**, in our case that was **maternal weight**, * and all other **covariates that have missing values**. In each of these models,<br> only those **variables that do not have any missing values** are used as **covariates**. --- class: animated, fadeIn # Time-Varying Covariates <div class = 'row'> <div class = 'column' style="width:45%"> <center> <h3>Bayesian Approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <img src="index_files/blood-pressure.svg" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding: 5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-weight"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-weight"></i> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table> </center> </div> <div class = 'column' style="width:55%"> <center> <h3>Joint Model<br>Multiple Imputation</h3> <table id='seq' style="font-size:40px; border-collapse: collapse;"> <colgroup> <col> <col style="border:solid 2px #472050;"> <col span="2"> </colgroup> <tr> <td style="text-align:center"> <img src="index_files/blood-pressure.svg" style="width:50px"></img> </td> <td class = 'bd'> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-weight"></i> </td> <td class = 'bd'> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td class = 'bd'><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td class = 'bd'><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td class = 'bd'><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table></center> </div> </div> ??? To take into account the<br> **associations** between * **incomplete covariates**, * **time-varying covariate** and * the **outcome** these models are then **connected**. This connection does **not imply a direction** of the associations,<br> which is why joint model multiple imputation **can be used for endogenous** covariates. A particular **challenge that remains**, however, is the **analysis of the imputed data**<br> because **standard analysis methods** cannot handle endogenous covariates which may cause **bias in the results**. --- class: animated, fadeIn # Time-Varying Covariates <div class = 'row'> <div class = 'column' style="width:45%"> <center> <h3>Bayesian Approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <img src="index_files/blood-pressure.svg" style="width:50px"></img> </td> <td class = 'bd2' style = "border-top: solid 2px #472050;border-bottom: solid 0px #ece8ed;"> <i class="fas fa-long-arrow-alt-left" style="padding: 5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> <i class="fas fa-weight"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-weight"></i> </td> <td class = 'bd2' style = "border-bottom: solid 2px #472050;border-top: solid 0px #ece8ed;"> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table> </center> </div> <div class = 'column' style="width:55%"> <center> <h3>Joint Model<br>Multiple Imputation</h3> <table id='seq' style="font-size:40px; border-collapse: collapse;"> <colgroup> <col> <col style="border:solid 2px #472050;"> <col span="2"> </colgroup> <tr> <td style="text-align:center"> <img src="index_files/blood-pressure.svg" style="width:50px"></img> </td> <td class = 'bd'> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-weight"></i> </td> <td class = 'bd'> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td class = 'bd'><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td class = 'bd'><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td class = 'bd'><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table></center> </div> </div> ??? We **extended the Bayesian approach** to handle endogenous covariates by **introducing a similar connection** between * the model for the **outcome** and * the models for **time-varying covariates**. Since in the Bayesian approach analysis and imputation are performed **simultaneously** **endogeneity is taken into account** during **imputation as well as analysis**. --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/child_weight_purple.png" style="width:65px;"></img> <!-- <i class="fas fa-baby"></i> --> <!-- <span class="fas fa-weight"></span> --> <span class="fas fa-ruler-vertical"></span> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:35%;"> <img src = "index_files/weight_plot1c.png" style="width:400px"></img> </div> <div class = 'column' style="width:20%;"> <div style="width:200px;margin-top:100px;"> </div> </div> <div class = 'column' style="width:35%;"> <img src = "index_files/BMI_plot.png" style="width:400px"></img> </div> </div> ??? In the **second research question** about the association between **gestational weight** and **child BMI**, again, * **both variables** were measured **repeatedly**, however, * **maternal weight** was measured **during pregnancy**, and * **child BMI after birth**. It is therefore **not meaningful** to assume an association of maternal weight and child BMI **at the same time points** as was the case with blood pressure. --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/child_weight_purple.png" style="width:65px;"></img> <!-- <i class="fas fa-baby"></i> --> <!-- <span class="fas fa-weight"></span> --> <span class="fas fa-ruler-vertical"></span> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:35%;"> <img src = "index_files/weight_plot1c.png" style="width:400px"></img> </div> <div class = 'column' style="width:20%;"> <div class = 'endobox' style="width:200px;margin-top:100px;text-align:center;"> non-linear<br>association </div> </div> <div class = 'column' style="width:35%;"> <img src = "index_files/BMI_plot.png" style="width:400px"></img> </div> </div> ??? The **challenge of this research question** was to<br> **allow for more complex, non-linear associations** between a time-varying covariate and the outcome. <!-- Therefore here we were interested in other shapes that an association of --> <!-- a time-varying covariate with the outcome can have. --> --- class: animated, fadeIn # Time-Varying Covariates <div class="wrapper"> <div class="box-ch2-out"> <img src="index_files/child_weight_purple.png" style="width:65px;"></img> <!-- <i class="fas fa-baby"></i> --> <!-- <span class="fas fa-weight"></span> --> <span class="fas fa-ruler-vertical"></span> </div> <div class="box-ch2-expo"> <img src="index_files/preg_weight_purple.png" style="width:65px;"></img> <!-- <span class="fas fa-weight"></span> --> </div> <div class="box-ch2-arrow"> <img src="index_files/arrow_straight.svg" style="width:690px"> </div> </div> <div class = 'row' style="width:100%; position:fixed; bottom:10%"> <div class = 'column' style="width:35%;"> <img src = "index_files/weight_plot1d.png" style="width:400px"></img> </div> <div class = 'column' style="width:20%;"> <div class = 'endobox' style="width:200px;margin-top:100px;text-align:center;"> non-linear<br>association </div> </div> <div class = 'column' style="width:35%;"> <img src = "index_files/BMI_plot.png" style="width:400px"></img> </div> </div> ??? And for **this particular application**,<br> **trimester-specific weight gain** was of interest, meaning, the amount of weight gained during each trimester. --- class: animated, fadeIn # Time-Varying Covariates <div class = 'row'> <div class = 'column' style="width:45%"> <center> <h3>Bayesian Approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <img src = "index_files/child_weight_lightpurple.png" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding: 5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> <img src = "index_files/preg_weight_lightpurple.png" style="width:50px"></img></td> </tr> <tr> <td><img src = "index_files/preg_weight.png" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table> </center> </div> <div class = 'column' style="width:55%"> <center> <h3>Joint Model<br>Multiple Imputation</h3> <table id='seq' style="font-size:40px; border-collapse: collapse;"> <colgroup> <col> <col style="border:solid 1px"> <col span="2"> </colgroup> <tr> <td style="text-align:center"> <img src = "index_files/child_weight.png" style="width:55px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><img src = "index_files/preg_weight.png" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table></center> </div> </div> ??? In the **Bayesian approach**, analysis and imputation are performed **simultaneously**. This means, that * the **non-linear** and potentially complex **association** * which is **part of the analysis model** is * **automatically taken into account** during imputation. --- class: animated, fadeIn # Time-Varying Covariates <div class = 'row'> <div class = 'column' style="width:45%"> <center> <h3>Bayesian Approach<br> </h3> <table id='seq' style="font-size:40px;"> <tr> <td style="text-align:center"> <img src = "index_files/child_weight_lightpurple.png" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding: 5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> <img src = "index_files/preg_weight_lightpurple.png" style="width:50px"></img></td> </tr> <tr> <td><img src = "index_files/preg_weight.png" style="width:50px"></img> </td> <td> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> <i class="fas fa-graduation-cap"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> <i class = "fas fa-smoking"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> <i class="fas fa-baby"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table> </center> </div> <div class = 'column' style="width:55%"> <center> <h3>Joint Model<br>Multiple Imputation</h3> <table id='seq' style="font-size:40px; border-collapse: collapse;"> <colgroup> <col> <col style="border:solid 1px"> <col span="2"> </colgroup> <tr> <td style="text-align:center"> <img src = "index_files/child_weight_lightpurple.png" style="width:50px"></img> </td> <td class = 'bd2' style = "border-top: solid 2px #472050;"> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i> </td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><img src = "index_files/preg_weight_lightpurple.png" style="width:50px"></img> </td> <td class = 'bd2' style = "border-bottom: solid 2px #472050;"> <i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-graduation-cap"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class = "fas fa-smoking"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> <tr> <td style="text-align:center"><i class="fas fa-baby"></i> </td> <td><i class="fas fa-long-arrow-alt-left" style="padding:5px 10px;"></i></td> <td> <i class="far fa-calendar-alt"></i> <i class = "fas fa-globe-africa"></i> </td> </tr> </table></center> </div> </div> ??? In **joint model multiple imputation**<br> the **only connection** between child BMI and maternal weight is **through the link** of the two models. This **link**, however, **implies a linear association**. Because * **missing values** are **imputed under a wrong assumptions** * the results may be **biased**, even when * the **correct, non-linear association** is used **during analysis** of the imputed data. --- class: animated, fadeIn # Time-Varying Covariates <div class = "row"> <div class = "column" style="width:35%;"> <center> <h3> Bayesian approach<br> </h3> <div class = 'mybox' style="display: inline-block;width:300px; margin-top: 15px;"> <div class = "row"> <div class = "column" style="width:90px;position:relative; top:5px;"> <i class="far fa-smile fa-2x"></i> </div> <div class = "column" style="width:200px;text-align:left;"> unbiased results </div> </div> </div> <div class = 'mybox' style="display: inline-block;width:300px;"> <div class = "row"> <div class = "column" style="width:90px;position:relative; top:5px;"> <i class="far fa-smile fa-2x"></i> </div> <div class = "column" style="width:200px;text-align:left;"> unbiased results </div> </div> </div> </center> </div> <div class = "column" style="width:20%;"> <h3> <br> </h3> <div class = 'mybox2' style="display:inline-block; margin-top: 15px;"> endogeneity </div> <div class = 'mybox2' style="display:inline-block;"> non-linearity </div> </div> <div class = "column" style="width:45%;"> <center> <h3>Joint Model<br>Multiple Imputation</h3> <div class = 'mybox' style="display:inline-block; margin-top: 15px;"> <div class = "row"> <div class = "column" style="width:60px;position:relative; top:2px;"> <i class="far fa-smile fa-1x"></i> </div> <div class = "column" style="width:320px;text-align:left;"> imputation OK </div> </div> <div class = "row"> <div class = "column" style="width:60px;position:relative; top:2px;"> <i class="far fa-frown fa-1x"></i> </div> <div class = "column" style="width:345px;text-align:left;"> analysis problematic </div> </div> </div> <div class = 'mybox' style="display:inline-block;"> <div class = "row"> <div class = "column" style="width:60px;position:relative; top:2px;"> <i class="far fa-frown fa-1x"></i> </div> <div class = "column" style="width:345px;text-align:left;"> imputation biased </div> </div> <div class = "row"> <div class = "column" style="width:60px;position:relative; top:2px;"> <i class="far fa-smile fa-1x"></i> </div> <div class = "column" style="width:345px;text-align:left;"> analysis OK </div> </div> </div> </center> </div> </div> ??? In summary: * The Bayesian approach can handle * **endogenous** variables as well as * complex, **non-linear associations** * Joint Model multiple imputation can * handle **endogenous** covariates, but * **analysis** of the imputed data **remains difficult**. * And Joint model MI will **introduce bias** when associations are **non-linear** --- class: mychapter, animated, fadeIn # Chapter 6<br><br>Software Implementation<br>into an R Package ??? Chapter 6 describes the **implementation** of the Bayesian approach in the **statistical software "R"**. --- class: animated, fadeIn # Software Implementation <center> <div class="row" style="margin-top: -10px"> <div class="cardcol"> <div class="card"> <div class = 'card-header'>Longitudinal Outcome</div> <img src = "index_files/weight_plot2b.png" style="width:90%"> </div> </div> <div class="cardcol" style="padding: 0 15px;"> <div class="card"> <div class = 'card-header'>Endogenous Covariate</div> <img src = "index_files/BP_plot2b.png" style="width:90%"> </div> </div> <div class="cardcol"> <div class="card"> <div class = 'card-header'>Non-linear Association</div> <img src = "index_files/weight_plot1e.png" style="width:90%"> </div> </div> </div> <div class="row" style = 'padding: 10px 0 0 0;position:relative; left:16%;'> <!-- <div class="cardcol"> --> <!-- <div class="card"> --> <!-- <div class = 'card-header'>Time-to-Event Outcome</div> --> <!-- <img src = "index_files/surv_plot.png" style="width:90%"> --> <!-- </div> --> <!-- </div> --> <!-- <div class="cardcol" style="padding: 0 15px;"> --> <!-- <div class="card"> --> <!-- <div class = 'card-header'>Interaction Term</div> --> <!-- <img src = "index_files/int_plot.png" style="width:90%"> --> <!-- </div> --> <!-- </div> --> </div> </center> ??? In the **previous chapters** of my **dissertation**, we have shown that **standard imputation methods** may have difficulties in settings * where the **outcome is longitudinal**, * where covariates are **endogenous** or * when the **association** between a covariate and the outcome is **complex**. --- class: animated, fadeIn # Software Implementation <center> <div class="row" style="margin-top: -10px"> <div class="cardcol"> <div class="card"> <div class = 'card-header'>Longitudinal Outcome</div> <img src = "index_files/weight_plot2b.png" style="width:90%"> </div> </div> <div class="cardcol" style="padding: 0 15px;"> <div class="card"> <div class = 'card-header'>Endogenous Covariate</div> <img src = "index_files/BP_plot2b.png" style="width:90%"> </div> </div> <div class="cardcol"> <div class="card"> <div class = 'card-header'>Non-linear Association</div> <img src = "index_files/weight_plot1e.png" style="width:90%"> </div> </div> </div> <div class="row" style = 'padding: 10px 0 0 0;position:relative; left:16%;'> <div class="cardcol"> <div class="card"> <div class = 'card-header'>Time-to-Event Outcome</div> <img src = "index_files/surv_plot.png" style="width:90%"> </div> </div> <div class="cardcol" style="padding: 0 15px;"> <div class="card"> <div class = 'card-header'>Interaction Term</div> <img src = "index_files/int_plot.png" style="width:90%"> </div> </div> </div> </center> ??? **Other studies** have shown that the same is the case for * **time-to-event outcomes** and * models that involve **interaction terms**. Based on * **theory**, * our **real data examples** and * **simulation studies** we know that the **Bayesian approach can overcome these difficulties** and can provide correct results. --- class: animated, fadeIn # Software Implementation <center> <div class = 'row' style = "margin-top: 100px;"> <div class = "column" style="width:25%; text-align:right;"> <i class="fas fa-book fa-5x"></i> </div> <div class = "column" style="width:48%; text-align:center"> <div class="arrow_box" style= 'width:200px;color:#472050'> </div> </div> <div class = "column" style="width:25%; text-align:left;"> <i class="fas fa-tools fa-5x"></i> </div> </div> <h2 style="font-weight:bold"> <!-- <span style="color:#472050">Joint A</span>nalysis and <span style="color:#472050">I</span>mputation --> </h2> <!-- <table id = 'JointAItab' style = "margin-top: 100px;"> --> <!-- <tr> --> <!-- <td style="text-align:center;"> --> <!-- <a href="https://CRAN.R-project.org/package=JointAI"><img src = 'index_files/Rlogo.svg' style="width:100px;"><img></a> --> <!-- </td> --> <!-- <td style="text-align:center;"> --> <!-- <a href="https://github.com/NErler/JointAI" style="color:black;"><i class="fab fa-github fa-2x"></i></a> --> <!-- </td> --> <!-- <td style="text-align:center;"> --> <!-- <a href="https://nerler.github.io/JointAI" style="color:black;"><i class="fas fa-globe-europe fa-2x"></i></a> --> <!-- </td> --> <!-- </tr> --> <!-- </table> --> </center> ??? For it to be **useful in practice**, however, theoretical results and examples are **not sufficient**. --- class: animated, fadeIn # Software Implementation <center> <div class = 'row' style = "margin-top: 100px;"> <div class = "column" style="width:25%; text-align:right;"> <i class="fas fa-book fa-5x"></i> </div> <div class = "column" style="width:48%; text-align:center"> <div class="arrow_box" style= 'width:200px;'>JointAI</div> </div> <div class = "column" style="width:25%; text-align:left;"> <i class="fas fa-tools fa-5x"></i> </div> </div> <h2 style="font-weight:bold"> <span style="color:#472050">Joint A</span>nalysis and <span style="color:#472050">I</span>mputation </h2> <!-- <table id = 'JointAItab' style = "margin-top: 100px;"> --> <!-- <tr> --> <!-- <td style="text-align:center;"> --> <!-- <a href="https://CRAN.R-project.org/package=JointAI"><img src = 'index_files/Rlogo.svg' style="width:100px;"><img></a> --> <!-- </td> --> <!-- <td style="text-align:center;"> --> <!-- <a href="https://github.com/NErler/JointAI" style="color:black;"><i class="fab fa-github fa-2x"></i></a> --> <!-- </td> --> <!-- <td style="text-align:center;"> --> <!-- <a href="https://nerler.github.io/JointAI" style="color:black;"><i class="fas fa-globe-europe fa-2x"></i></a> --> <!-- </td> --> <!-- </tr> --> <!-- </table> --> </center> ??? To **facilitate the step** from theory to practice, we implemented the Bayesian approach in the **R package JointAI**, short for Joint Analysis and Imputation. Its **use** follows the **use of very well-known functions** for **analysis of complete data** so that the **step from standard, complete data models** to **analysis and imputation under the Bayesian framework** requires **hardly any extra effort**. --- class: animated, fadeIn # Software Implementation <center> <div class = 'row' style = "margin-top: 100px;"> <div class = "column" style="width:25%; text-align:right;"> <i class="fas fa-book fa-5x"></i> </div> <div class = "column" style="width:48%; text-align:center"> <div class="arrow_box" style= 'width:200px;'>JointAI</div> </div> <div class = "column" style="width:25%; text-align:left;"> <i class="fas fa-tools fa-5x"></i> </div> </div> <h2 style="font-weight:bold"> <span style="color:#472050">Joint A</span>nalysis and <span style="color:#472050">I</span>mputation </h2> <table id = 'JointAItab' style = "margin-top: 100px;"> <tr> <td style="text-align:center;"> <a href="https://CRAN.R-project.org/package=JointAI"><img src = 'index_files/Rlogo.svg' style="width:100px;"><img></a> </td> <td style="text-align:center;"> <a href="https://github.com/NErler/JointAI" style="color:black;"><i class="fab fa-github fa-2x"></i></a> </td> <td style="text-align:center;"> <a href="https://nerler.github.io/JointAI" style="color:black;"><i class="fas fa-globe fa-2x"></i></a> </td> </tr> </table> </center> ??? The package is * available for download from **The Comprehensive R Archive Network**. * Development versions can be obtained via **GitHub**, and * the package has its own **website** with **detailed documentation and examples**. <!-- --- --> <!-- class: animated, fadeIn --> <!-- # Software Implementation --> <!-- <img src = "index_files/webpage.png" style="width:100%"></img> --> --- class: title-slide, animated, fadeIn # Bayesian<br>Imputation of<br>Missing Covariates <h3> <br>Nicole S. Erler<br><span style='font-size: 20pt'>June 12, 2019</span></h3> ??? Thank you for your attention. I give the word back to you, Sir Rector.