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In wide format:

» for unbalanced data: direct wide format may not be possible
» for relatively balanced data: inefficient

Simple summaries to allow wide format:
» loss of information
> potential MNAR
» bias



Imputation with mice
mice has functions to allow imputation of longitudinal (2-level) data:

> Level 1:
repeated measurements within subjects or subjects within classes

> Level 2:
time-constant/baseline covariates, between subjects effects,
variables on the group level

Imputation methods for level-1 Imputation methods for level-2
variables: variables:

» 21.pan » 2lonly.norm

» 21.norm » 2lonly.pmm

» 21.1mer » 2lonly.mean

» 21.bin
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Imputation with mice

» 21.pan: linear two-level model with homogeneous within group
variances (Schafer and Yucel 2002)

» 21 .norm: (Bayesian) linear two-level model with heterogenous group
variances

» 21.1mer/21.bin: univariate systematically and sporadically missing
data using a two-level normal/logistic model using 1mer ()/glmer ()
from package Imea4.

» 2lonly.normand 2lonly.pmm: to impute level-2 variables

» 2lonly.mean: imputes values with the mean of the observed values
per class (only to be used in special cases!)



Imputation with mice

The predictorMatrix contains extra info for multi-level imputation:

» grouping/ID variable: -2

» random effects (also included as fixed effects): 2
» fixed effects of group means: 3

> fixed effects of group means & random effects: 4

In all cases, the group identifier (“id” variable) needs to be set to -2 in the
predictorMatrix.
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Imputation with mice

Alternative approach: (Erler et al. 2016)
Get a better summary of the longitudinal variables!

Approximate trajectories using random effects!
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Imputation with mice

> Fit a flexible mixed model for outcome and other longitudinal
variables
= extract the random effects

» reduce data to a “baseline” version & add random effects as columns
» impute with mice
» extract imputed data & merge with long. variables

» convert back tomids object & analyse

Drawback: cannot handle incomplete longitudinal variables.



Imputation with JointAl

Example data:

x1 (complete)

x2 (binary, 30% NA)

X3 (3 categories, 30% NA)

x4 (continuous/normal, 30% NA)

vy (longitudinal outcome)

time (time variable with quadratic effect)
id (id variable)

vVvyVvVvYyypy



Imputation with JointAl

The syntax for analysing mixed models in JointAl is analogous the syntax
used in 1me () of the package nime.

library("JointAI")

JointAI_long <- lme_imp(y ~ x1 + x2 + x3 + x4 + time + I(time™2),
random ~time|id, data = longDF2,
n.iter = 5000)



Imputation with JointAl

The syntax for analysing mixed models in JointAl is analogous the syntax
used in 1me () of the package nime.

library("JointAI")

JointAI_long <- lme_imp(y ~ x1 + x2 + x3 + x4 + time + I(time™2),
random ~time|id, data = longDF2,
n.iter = 5000)

Again, convergence of the Gibbs sampler needs to be checked before
obtaining the results.

Contrary to the two-level imputation of mice, non-linear associations are
appropriately handled.



Comparison of Results
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