EP16: Missing Values in Clinical Research: Multiple Imputation

12. Imputation with Longitudinal Data

Nicole Erler
Department of Biostatistics, Erasmus Medical Center

-n.erler@erasmusmc.nl

The Challenge with Longitudinal Data

In long format:

- (potential) correlation between repeated measurements ignored
- inconsistent imputation of baseline covariates

The Challenge with Longitudinal Data

In long format:

- (potential) correlation between repeated measurements ignored
- inconsistent imputation of baseline covariates

In wide format:

- for unbalanced data: direct wide format may not be possible
- for relatively balanced data: inefficient

The Challenge with Longitudinal Data

In long format:

- (potential) correlation between repeated measurements ignored
- inconsistent imputation of baseline covariates

In wide format:

- for unbalanced data: direct wide format may not be possible
- for relatively balanced data: inefficient

Simple summaries to allow wide format:

- loss of information
- potential MNAR
- bias

Imputation with mice

mice has functions to allow imputation of longitudinal (2-level) data:

- Level 1: repeated measurements within subjects or subjects within classes
- Level 2: time-constant/baseline covariates, between subjects effects, variables on the group level

Imputation methods for level-1 variables:

- 21.pan
- 21.norm
- 21.1mer
- 21.bin

Imputation methods for level-2 variables:

- 2lonly.norm
- 2lonly.pmm
- 2lonly.mean

Imputation with mice

- 21.pan: linear two-level model with homogeneous within group variances (Schafer and Yucel 2002)
- 21.norm: (Bayesian) linear two-level model with heterogenous group variances

Imputation with mice

- 21.pan: linear two-level model with homogeneous within group variances (Schafer and Yucel 2002)
- 21.norm: (Bayesian) linear two-level model with heterogenous group variances
- 21.1mer/21.bin: univariate systematically and sporadically missing data using a two-level normal/logistic model using lmer()/glmer() from package Ime4.

Imputation with mice

- 21.pan: linear two-level model with homogeneous within group variances (Schafer and Yucel 2002)
- 21.norm: (Bayesian) linear two-level model with heterogenous group variances
- 21.1mer/21.bin: univariate systematically and sporadically missing data using a two-level normal/logistic model using lmer()/glmer() from package Ime4.
- 2lonly.norm and 2lonly.pmm: to impute level-2 variables

Imputation with mice

- 21.pan: linear two-level model with homogeneous within group variances (Schafer and Yucel 2002)
- 21.norm: (Bayesian) linear two-level model with heterogenous group variances
- 21.1mer/21.bin: univariate systematically and sporadically missing data using a two-level normal/logistic model using lmer()/glmer() from package Ime4.
- 2lonly.norm and 2lonly.pmm: to impute level-2 variables
- 2lonly.mean: imputes values with the mean of the observed values per class (only to be used in special cases!)

Imputation with mice

The predictorMatrix contains extra info for multi-level imputation:

- grouping/ID variable: -2
- random effects (also included as fixed effects): 2
- fixed effects of group means: 3
- fixed effects of group means \& random effects: 4

In all cases, the group identifier ("id" variable) needs to be set to -2 in the predictorMatrix.

Imputation with mice

Alternative approach: (Erler et al. 2016)
Get a better summary of the longitudinal variables!

Imputation with mice

Alternative approach: (Erler et al. 2016)
Get a better summary of the longitudinal variables!

Imputation with mice

Alternative approach: (Erler et al. 2016)
Get a better summary of the longitudinal variables!

Imputation with mice

Alternative approach: (Erler et al. 2016)
Get a better summary of the longitudinal variables!

Approximate trajectories using random effects!

Imputation with mice

- Fit a flexible mixed model for outcome and other longitudinal variables
\Rightarrow extract the random effects

Imputation with mice

- Fit a flexible mixed model for outcome and other longitudinal variables
\Rightarrow extract the random effects
- reduce data to a "baseline" version \& add random effects as columns

Imputation with mice

- Fit a flexible mixed model for outcome and other longitudinal variables
\Rightarrow extract the random effects
- reduce data to a "baseline" version \& add random effects as columns
- impute with mice

Imputation with mice

- Fit a flexible mixed model for outcome and other longitudinal variables
\Rightarrow extract the random effects
- reduce data to a "baseline" version \& add random effects as columns
- impute with mice
- extract imputed data \& merge with long. variables

Imputation with mice

- Fit a flexible mixed model for outcome and other longitudinal variables
\Rightarrow extract the random effects
- reduce data to a "baseline" version \& add random effects as columns
- impute with mice
- extract imputed data \& merge with long. variables
- convert back to mids object \& analyse

Imputation with mice

- Fit a flexible mixed model for outcome and other longitudinal variables
\Rightarrow extract the random effects
- reduce data to a "baseline" version \& add random effects as columns
- impute with mice
- extract imputed data \& merge with long. variables
- convert back to mids object \& analyse

Imputation with mice

- Fit a flexible mixed model for outcome and other longitudinal variables
\Rightarrow extract the random effects
- reduce data to a "baseline" version \& add random effects as columns
- impute with mice
- extract imputed data \& merge with long. variables
- convert back to mids object \& analyse

Drawback: cannot handle incomplete longitudinal variables.

Imputation with JointAI

Example data:

- xl (complete)
- x2 (binary, 30\% NA)
- x3 (3 categories, 30\% NA)
- x4 (continuous/normal, 30\% NA)
- y (longitudinal outcome)
- time (time variable with quadratic effect)
- id (id variable)

Imputation with JointAI

The syntax for analysing mixed models in JointAI is analogous the syntax used in lme() of the package nlme.

```
library("JointAI")
JointAI_long <- lme_imp(y ~ x1 + x2 + x3 + x4 + time + I(time^2),
    random = ~time|id, data = longDF2,
    n.iter = 5000)
```


Imputation with JointAI

The syntax for analysing mixed models in JointAI is analogous the syntax used in lme() of the package nlme.

```
library("JointAI")
JointAI_long <- lme_imp(y ~ x1 + x2 + x3 + x4 + time + I(time^2),
    random = ~time|id, data = longDF2,
    n.iter = 5000)
```

Again, convergence of the Gibbs sampler needs to be checked before obtaining the results.

Contrary to the two-level imputation of mice, non-linear associations are appropriately handled.

Comparison of Results

Comparison of Results

References

Erler, Nicole S, Dimitris Rizopoulos, Joost van Rosmalen, Vincent WV Jaddoe, Oscar H Franco, and Emmanuel MEH Lesaffre. 2016. "Dealing with Missing Covariates in Epidemiologic Studies: A Comparison Between Multiple Imputation and a Full Bayesian Approach." Statistics in Medicine 35 (17): 2955-74. https://doi.org/10.1002/sim.6944.

Schafer, Joseph L, and Recai M Yucel. 2002. "Computational Strategies for Multivariate Linear Mixed-Effects Models with Missing Values." Journal of Computational and Graphical Statistics 11 (2): 437-57.

