EP16: Missing Values in Clinical Research: Multiple Imputation

11. Imputation with Non-linear Functional Forms

Nicole Erler
Department of Biostatistics, Erasmus Medical Center

-n.erler@erasmusmc.nl

Imputation with mice

There is no strategy for MICE that can guarantee valid imputations when non-linear functional forms and/or interactions are involved, but some settings in mice may help to reduce bias in the resulting estimates.

Imputation with mice

There is no strategy for MICE that can guarantee valid imputations when non-linear functional forms and/or interactions are involved, but some settings in mice may help to reduce bias in the resulting estimates.

For imputation of variables that have non-linear associations

- PMM often works better than imputation with a normal model,
- the Just Another Variable approach can reduce bias in interactions,
- passive imputation
- quadratic can help to impute variables with quadratic association.

Imputation with mice

For demonstration, we use a simulated example dataset DFnonlin:
y continuous outcome
x continuous (normal) covariate (50\% missing values MCAR)
z binary covariate (complete)

We assume a

- quadratic effect of x on y, and
- an interaction between x and z

```
head(DF_nonlin)
\begin{tabular}{lrr} 
\#\# & y & x z \\
\#\# & 1 & -0.4002016 \\
\#\# & -0.42298398 & 1 \\
\#\# & 0.7883355 & -1.54987816 \\
0 & 0.1900922 & -0.06442932 \\
\# & 0 \\
\#\# 4 & 0.3321608 & 0.27088135 \\
\#\# & 5 & 4.6146593 \\
\#\# & 6 & 0.3705739
\end{tabular}
```

```
dim(DF_nonlin)
```

\#\# [1] 200
3

Imputation with mice: JAV

Just Another Variable (JAV) approach:

- pre-calculate the non-linear form (or interaction term) in the incomplete data,
- add it as a column to the dataset, and
- impute it as if it was just another variable.

Imputation with mice: JAV

Just Another Variable (JAV) approach:

- pre-calculate the non-linear form (or interaction term) in the incomplete data,
- add it as a column to the dataset, and
- impute it as if it was just another variable.

```
DF2 <- DF_nonlin # copy of the data, only for this example
DF2$xx <- DF2$x^2 # pre-calculate the quadratic term
DF2$xz <- DF2$x * DF2$z # pre-calculate the interaction
# JAV imputation (using pmm and full predictor matrix)
impJAV <- mice(DF2, maxit = 20, printFlag = FALSE)
```


Imputation with mice: JAV

To relax the assumption of linear associations even more, we could introduce additional interactions with the outcome.

In this example, we can add an interaction between z and y :
DF3 <- DF2 \# make another copy of the data
$\mathrm{DF} 3 \$ \mathrm{yz}<-\mathrm{DF} 3 \$ \mathrm{y}$ * DF3\$z \# add interaction y and z

```
# JAV imputation with additional interaction
impJAV2 <- mice(DF3, maxit = 20, printFlag = FALSE)
```


Imputation with mice: Passive Imputation

Alternative: impute all non-linear terms and interactions passively:

```
# adapt the imputation method (we re-use the vector from impJAV2 here)
meth_passive <- impJAV2$method
meth_passive[c("xx", "xz", "yz")] <- c("~I(x^2)", "~I(x*z)", "~I(y*z)")
```


Imputation with mice: Passive Imputation

Alternative: impute all non-linear terms and interactions passively:

```
# adapt the imputation method (we re-use the vector from impJAV2 here)
meth_passive <- impJAV2$method
meth_passive[c("xx", "xz", "yz")] <- c("~I(x^2)", "~I(x*z)", "~I(y*z)")
# adapt the predictor matrix (we re-use the matrix from impJAVZ here)
pred_passive <- impJAV2$predictorMatrix
pred_passive['x', 'xx'] <- 0
pred_passive[c('x', 'z'), 'xz'] <- 0
pred_passive[c('y', 'z'), 'yz'] <- 0
```


Imputation with mice: Passive Imputation

Alternative: impute all non-linear terms and interactions passively:

```
# adapt the imputation method (we re-use the vector from impJAV2 here)
meth_passive <- impJAV2$method
meth_passive[c("xx", "xz", "yz")] <- c("~I(x^2)", "~I(x*z)", "~I(y*z)")
# adapt the predictor matrix (we re-use the matrix from impJAVZ here)
pred_passive <- impJAV2$predictorMatrix
pred_passive['x', 'xx'] <- 0
pred_passive[c('x', 'z'), 'xz'] <- 0
pred_passive[c('y', 'z'), 'yz'] <- 0
imp_passive <- mice(DF3, method = meth_passive,
    predictorMatrix = pred_passive,
    maxit = 20, printFlag = FALSE)
```


Imputation with mice: Polynomial Combination

The imputation method quadratic uses the "polynomial combination" method to impute covariates that have a quadratic association with the outcome (Van Buuren 2012 pp. 139-141; Vink and van Buuren 2013).
\Rightarrow ensure the imputed values for x and x^{2} are consistent
\Rightarrow reduce bias in the subsequent analysis that uses x and x^{2}

Imputation with mice: Polynomial Combination

The imputation method quadratic uses the "polynomial combination" method to impute covariates that have a quadratic association with the outcome (Van Buuren 2012 pp. 139-141; Vink and van Buuren 2013).
\Rightarrow ensure the imputed values for x and x^{2} are consistent
\Rightarrow reduce bias in the subsequent analysis that uses x and x^{2}

```
# adapt the imputation method (we re-use the vector from impJAV here)
methqdr <- impJAV$meth
methqdr[c("x", "xx", "xz")] <- c("quadratic", "~I(x^2)", "~I(x*z)")
```

\Rightarrow Here we use passive imputation for x^{2} and the interaction.

Imputation with mice: polynomial combination

```
# adapt the predictor matrix (we re-use the matrix from impJAV here)
predqdr <- impJAV$pred
predqdr['x', "xx"] <- 0 # prevent feedback
predqdr[c('x', 'z'), 'xz'] <- 0 # prevent feedback
impqdr <- mice(DF3, meth = methqdr, pred = predqdr,
    maxit = 20, printFlag = FALSE)
```


Imputation with mice: polynomial combination

```
# adapt the predictor matrix (we re-use the matrix from impJAV here)
predqdr <- impJAV$pred
predqdr['x', "xx"] <- 0 # prevent feedback
predqdr[c('x', 'z'), 'xz'] <- 0 # prevent feedback
impqdr <- mice(DF3, meth = methqdr, pred = predqdr,
    maxit = 20, printFlag = FALSE)
```

For comparison, we also run a naive version (using defaults):
\# naive imputation, using only y, x, z
impnaive <- mice(DF_nonlin, printFlag = FALSE)

Imputation with mice

Imputation with JointAI

The syntax we use to analyse and impute the current example using JointAl is similar to the specification of a standard linear model using lm().
library("JointAI")
JointAI_nonlin <- lm_imp(y $\sim \mathrm{x} * \mathrm{z}+\mathrm{I}\left(\mathrm{x}^{\wedge} 2\right)$, data $=$ DF_nonlin, n.iter $=2500$)

Imputation with JointAI

The syntax we use to analyse and impute the current example using JointAl is similar to the specification of a standard linear model using lm().

```
library("JointAI")
JointAI_nonlin <- lm_imp(y ~ x*z + I(x^2), data = DF_nonlin,
n.iter = 2500)
```

Convergence of the Gibbs sampler can be checked using a traceplot.

```
traceplot(JointAI_nonlin, ncol = 3, use_ggplot = TRUE)
```


Imputation with JointAI

The syntax we use to analyse and impute the current example using JointAl is similar to the specification of a standard linear model using lm().

```
library("JointAI")
JointAI_nonlin <- lm_imp(y ~ x*z + I(x^2), data = DF_nonlin,
    n.iter = 2500)
```

Convergence of the Gibbs sampler can be checked using a traceplot.
traceplot(JointAI_nonlin, ncol = 3, use_ggplot = TRUE)

Results (no separate analysis \& pooling is necessary) can be obtained with the summary () function:
summary(JointAI_nonlin)

Imputation with JointAl: Convergence

 iteration

Imputation with JointAI: Model Summary

```
##
## Linear model fitted with JointAI
##
## Call:
## lm_imp(formula = y ~ x * z + I(x^2), data = DF_nonlin, n.iter = 2500,
## seed = 1234)
##
## Posterior summary:
## Mean SD 2.5% 97.5% tail-prob. GR-crit
## (Intercept) -0.138 0.0697 -0.276 0.000259 0.0512 1.09
## x 
```



```
## I(x^2) 1.026 0.0393 0.949 1.102465 0.0000
## x:z1 0.957 0.1189 0.722 1.188642 0.0000 1.28
##
## Posterior summary of residual std. deviation:
## Mean SD 2.5% 97.5% GR-crit
## sigma_y 0.507 0.0334 0.447 0.576 1.01
##
## [...]
```


Imputation with JointAI: Model Summary

```
## [...]
##
## MCMC settings:
## Iterations = 101:2600
## Sample size per chain = 2500
## Thinning interval = 1
## Number of chains = 3
##
## Number of observations: 200
```


Imputation with Non-linear Effects: Comparison

Imputation with Non-linear Effects: Comparison

Just Another Variable:

- Easy specification
- usually less bias than naive approach
- inconsistent imputed values

Imputation with Non-linear Effects: Comparison

Just Another Variable:

- Easy specification
- usually less bias than naive approach
- inconsistent imputed values
passive imputation
- easy specification
- consistent imputed values
- less flexible than JAV

Imputation with Non-linear Effects: Comparison

Just Another Variable:

- Easy specification
- usually less bias than naive approach
- inconsistent imputed values

passive imputation

- easy specification
- consistent imputed values
- less flexible than JAV

polynomial combination

- consistent imputed values
- only available for quadratic association
- often numeric instabilities (warning messages)

Imputation with Non-linear Effects: Comparison

JointAI

- theoretically valid approach (= unbiased)
- similar specification to standard models
- simultaneous analysis \& imputation instead of three steps

Imputation with Non-linear Effects: Comparison

JointAI

- theoretically valid approach (= unbiased)
- similar specification to standard models
- simultaneous analysis \& imputation instead of three steps

To use JointAI appropriately and to interpret the results correctly requires more knowledge about the underlying method than can be covered in this course.

Imputation with Non-linear Effects: Comparison

JointAI

- theoretically valid approach (= unbiased)
- similar specification to standard models
- simultaneous analysis \& imputation instead of three steps

To use JointAI appropriately and to interpret the results correctly requires more knowledge about the underlying method than can be covered in this course.

Note:

The example used here only serves to demonstrate the different approaches. We cannot use these results to conclude which approach works better in general.

References

Van Buuren, Stef. 2012. Flexible Imputation of Missing Data. Chapman \& Hall/Crc Interdisciplinary Statistics. Taylor \& Francis. https://stefvanbuuren.name/fimd/.
Vink, Gerko, and Stef van Buuren. 2013. "Multiple Imputation of Squared Terms." Sociological Methods \& Research 42 (4): 598-607.

