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Imputation with mice

There is no strategy for MICE that can guarantee valid imputations
when non-linear functional forms and/or interactions are involved, but
some settings in mice may help to reduce bias in the resulting
estimates.

For imputation of variables that have non-linear associations

I PMM often works better than imputation with a normal model,
I the Just Another Variable approach can reduce bias in interactions,
I passive imputation
I quadratic can help to impute variables with quadratic association.
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Imputation with mice

For demonstration, we use a simulated example dataset DFnonlin:

y continuous outcome
x continuous (normal) covariate

(50% missing values MCAR)
z binary covariate (complete)

We assume a
I quadratic effect of x on y, and
I an interaction between x and z

head(DF_nonlin)

## y x z
## 1 -0.4002016 -0.42298398 1
## 2 0.7883355 -1.54987816 0
## 3 0.1900922 -0.06442932 0
## 4 0.3321608 0.27088135 0
## 5 4.6146593 1.73528367 0
## 6 0.3705739 NA 0

dim(DF_nonlin)

## [1] 200 3
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Imputation with mice: JAV

Just Another Variable (JAV) approach:

I pre-calculate the non-linear form (or interaction term) in the
incomplete data,

I add it as a column to the dataset, and
I impute it as if it was just another variable.

DF2 <- DF_nonlin # copy of the data, only for this example
DF2$xx <- DF2$x^2 # pre-calculate the quadratic term
DF2$xz <- DF2$x * DF2$z # pre-calculate the interaction

# JAV imputation (using pmm and full predictor matrix)
impJAV <- mice(DF2, maxit = 20, printFlag = FALSE)
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Imputation with mice: JAV

To relax the assumption of linear associations even more, we could
introduce additional interactions with the outcome.

In this example, we can add an interaction between z and y:
DF3 <- DF2 # make another copy of the data
DF3$yz <- DF3$y * DF3$z # add interaction y and z

# JAV imputation with additional interaction
impJAV2 <- mice(DF3, maxit = 20, printFlag = FALSE)
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Imputation with mice: Passive Imputation

Alternative: impute all non-linear terms and interactions passively:
# adapt the imputation method (we re-use the vector from impJAV2 here)
meth_passive <- impJAV2$method
meth_passive[c("xx", "xz", "yz")] <- c("~I(x^2)", "~I(x*z)", "~I(y*z)")

# adapt the predictor matrix (we re-use the matrix from impJAV2 here)
pred_passive <- impJAV2$predictorMatrix
pred_passive['x', 'xx'] <- 0
pred_passive[c('x', 'z'), 'xz'] <- 0
pred_passive[c('y', 'z'), 'yz'] <- 0

imp_passive <- mice(DF3, method = meth_passive,
predictorMatrix = pred_passive,
maxit = 20, printFlag = FALSE)
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Imputation with mice: Polynomial Combination

The imputation method quadratic uses the “polynomial combination”
method to impute covariates that have a quadratic association with the
outcome (Van Buuren 2012 pp. 139–141; Vink and van Buuren 2013).

á ensure the imputed values for x and x2 are consistent
á reduce bias in the subsequent analysis that uses x and x2

# adapt the imputation method (we re-use the vector from impJAV here)
methqdr <- impJAV$meth
methqdr[c("x", "xx", "xz")] <- c("quadratic", "~I(x^2)", "~I(x*z)")

á Here we use passive imputation for x2 and the interaction.
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Imputation with mice: polynomial combination

# adapt the predictor matrix (we re-use the matrix from impJAV here)
predqdr <- impJAV$pred
predqdr['x', "xx"] <- 0 # prevent feedback
predqdr[c('x', 'z'), 'xz'] <- 0 # prevent feedback

impqdr <- mice(DF3, meth = methqdr, pred = predqdr,
maxit = 20, printFlag = FALSE)

For comparison, we also run a naive version (using defaults):
# naive imputation, using only y, x, z
impnaive <- mice(DF_nonlin, printFlag = FALSE)
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Imputation with mice

x:z z

(Intercept) I(x^2) x

naive JAV JAV2 pas qdr naive JAV JAV2 pas qdr
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Imputation with JointAI

The syntax we use to analyse and impute the current example using
JointAI is similar to the specification of a standard linear model using
lm().
library("JointAI")
JointAI_nonlin <- lm_imp(y ~ x*z + I(x^2), data = DF_nonlin,

n.iter = 2500)

Convergence of the Gibbs sampler can be checked using a traceplot.

traceplot(JointAI_nonlin, ncol = 3, use_ggplot = TRUE)

Results (no separate analysis & pooling is necessary) can be obtained with the
summary() function:

summary(JointAI_nonlin)
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Imputation with JointAI: Convergence

x x:z1 z1

(Intercept) I(x^2) sigma_y
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Imputation with JointAI: Model Summary

##
## Linear model fitted with JointAI
##
## Call:
## lm_imp(formula = y ~ x * z + I(x^2), data = DF_nonlin, n.iter = 2500,
## seed = 1234)
##
## Posterior summary:
## Mean SD 2.5% 97.5% tail-prob. GR-crit
## (Intercept) -0.138 0.0697 -0.276 0.000259 0.0512 1.09
## x 0.954 0.0683 0.820 1.086675 0.0000 1.02
## z1 1.007 0.1005 0.810 1.207309 0.0000 1.10
## I(x^2) 1.026 0.0393 0.949 1.102465 0.0000 1.32
## x:z1 0.957 0.1189 0.722 1.188642 0.0000 1.28
##
## Posterior summary of residual std. deviation:
## Mean SD 2.5% 97.5% GR-crit
## sigma_y 0.507 0.0334 0.447 0.576 1.01
##
## [...]
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Imputation with JointAI: Model Summary

## [...]
##
## MCMC settings:
## Iterations = 101:2600
## Sample size per chain = 2500
## Thinning interval = 1
## Number of chains = 3
##
## Number of observations: 200
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Imputation with Non-linear Effects: Comparison

x:z z
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Imputation with Non-linear Effects: Comparison

Just Another Variable:
I Easy specification
I usually less bias than naive approach
I inconsistent imputed values

passive imputation
I easy specification
I consistent imputed values
I less flexible than JAV

polynomial combination
I consistent imputed values
I only available for quadratic association
I often numeric instabilities (warning messages)

14



Imputation with Non-linear Effects: Comparison

Just Another Variable:
I Easy specification
I usually less bias than naive approach
I inconsistent imputed values

passive imputation
I easy specification
I consistent imputed values
I less flexible than JAV

polynomial combination
I consistent imputed values
I only available for quadratic association
I often numeric instabilities (warning messages)

14



Imputation with Non-linear Effects: Comparison

Just Another Variable:
I Easy specification
I usually less bias than naive approach
I inconsistent imputed values

passive imputation
I easy specification
I consistent imputed values
I less flexible than JAV

polynomial combination
I consistent imputed values
I only available for quadratic association
I often numeric instabilities (warning messages)

14



Imputation with Non-linear Effects: Comparison

JointAI
I theoretically valid approach (= unbiased)
I similar specification to standard models
I simultaneous analysis & imputation instead of three steps

To use JointAI appropriately and to interpret the results correctly
requires more knowledge about the underlying method than can be
covered in this course.

Note:
The example used here only serves to demonstrate the different
approaches. We cannot use these results to conclude which approach
works better in general.
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