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Quadratic Effect
Consider the case where the analysis model (which we assume to be
true) is

y = β0 + β1x + β2x2 + . . . ,
i.e., y has a quadratic relationship with x, and x is incomplete.
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observed
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The original data show a
curved pattern.
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Quadratic Effect
The model used to impute x when using MICE (naively) is

x = θ10 + θ11y + . . . ,

i.e., a linear relation between x and y is assumed.
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The imputed values dis-
tort the curved pattern
of the original data.
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Quadratic Effect
The model fitted on the imputed data gives severely biased results; the
non-linear shape of the curve has almost completely disappeared.
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Interaction Effect
Another example: consider the analysis model (again, assumed to be
true)

y = β0 + βxx + βzz + βxzxz + . . . ,
i.e., y has a non-linear relationship with x due to the interaction term.
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missing (z = 1)
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observed (z = 1)

The original data shows a
“<” shaped pattern.
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Interaction Effect
The model used to impute x when using MICE (naively) is

x = θ10 + θ11y + θ12z + . . . ,

i.e., a linear relation between x and y is assumed.
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The “<” shaped pattern
of the true data is dis-
torted by the imputed
values.
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Interaction Effect
And the analysis on these naively imputed values leads to severely
biased estimates.
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Longitudinal Outcome

0.0 2.5 5.0 7.5

time

y
ID y x1 x2 x3 x4 time

1 X X NA X X 0.87
1 X X NA X X 2.41
1 X X NA X X 4.47
1 X X NA X X 6.06
1 X X NA X X 8.96
2 X X X NA NA 3.00
2 X X X NA NA 4.83
2 X X X NA NA 6.45
2 X X X NA NA 8.08
3 X X X NA NA 2.51
3 X X X NA NA 4.10
3 X X X NA NA 6.85
4 X X NA X X 2.21
4 X X NA X X 4.68
4 X X NA X X 6.48
...

...
...

...
...

...
...

(x1, . . . , x4 are baseline covariates, i.e., not measured repeatedly, e.g. age at
baseline, gender, education level, . . . )
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Longitudinal Outcome

For data in long format:
I each row would be regarded as

independent
I á bias and inconsistent

imputations

Imputed values of baseline
covariates are imputed with
different values, creating data that
could not have been observed.

ID y x1 x2 x3 x4 time

1 X X girl X X 0.87
1 X X boy X X 2.41
1 X X girl X X 4.47
1 X X girl X X 6.06
1 X X girl X X 8.96
2 X X X mid 38.8 3.00
2 X X X high 39.9 4.83
2 X X X mid 40.1 6.45
2 X X X low 39.7 8.08
3 X X X high 40.7 2.51
3 X X X low 40.4 4.10
3 X X X mid 39.7 6.85
4 X X boy X X 2.21
4 X X boy X X 4.68
4 X X girl X X 6.48
...

...
...

...
...

...
...
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Longitudinal Outcome

x3 (low) x3 (mid) x4

Intercept x1 x2

original imputed original imputed original imputed

original imputed original imputed original imputed
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Estimates can be
severely biased.
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Longitudinal Outcome
In some settings imputation in wide format may be possible.

0.0 2.5 5.0 7.5

time

y

ID y x1 x2 x3 x4 time

1 X X NA X X 0.87
1 X X NA X X 2.41
1 X X NA X X 4.47
1 X X NA X X 6.06
1 X X NA X X 8.96
2 X X X NA NA 3.00
2 X X X NA NA 4.83
2 X X X NA NA 6.45
2 X X X NA NA 8.08
3 X X X NA NA 2.51
3 X X X NA NA 4.10
3 X X X NA NA 6.85
4 X X NA X X 2.21
4 X X NA X X 4.68
4 X X NA X X 6.48
...

...
...

...
...

...
...
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Longitudinal Outcome
In some settings imputation in wide format may be possible.

1 3 5 7 9

time

y

ID y x1 x2 x3 x4 time

1 X X NA X X 0.87
1 X X NA X X 2.41
1 X X NA X X 4.47
1 X X NA X X 6.06
1 X X NA X X 8.96
2 X X X NA NA 3.00
2 X X X NA NA 4.83
2 X X X NA NA 6.45
2 X X X NA NA 8.08
3 X X X NA NA 2.51
3 X X X NA NA 4.10
3 X X X NA NA 6.85
4 X X NA X X 2.21
4 X X NA X X 4.68
4 X X NA X X 6.48
...

...
...

...
...

...
...
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Longitudinal Outcome

id y.1 time.1 y.3 time.3 y.5 time.5 y.7 time.7 y.9 time.9 . . .

1 31.6 0.9 31.8 2.4 31.7 4.5 31.5 6.1 32.5 9 . . .
2 NA NA 36.2 3 36.1 4.8 36.1 6.5 36.6 8.1 . . .
3 NA NA 29.8 2.5 29.8 4.1 30 6.8 NA NA . . .
4 NA NA 36.1 2.2 35.9 4.7 36.3 6.5 NA NA . . .
...

...
...

...
...

...
...

...
...

...
...

. . .

In wide format:

I missing values in outcome and measurement times need to be
imputed
(to be able to use them as predictors to impute covariates)

I inefficient! (we would not need to impute them for the analysis)
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Longitudinal Outcome

x3 (low) x3 (mid) x4

Intercept x1 x2
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Better, but large
confidence intervals.
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Longitudinal Outcome

time

y

Very unbalanced data:
transformation to wide
format not possible.

(Or requires summary
measures)
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Longitudinal Outcome

time

y

time

y

Naive approaches that are
sometimes used are to
I ignore the outcome in

the imputation

, or to
I use only the

first/baseline outcome

á Important information
may be lost!

á invalid imputations and
biased results
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Longitudinal Outcome

time

y

time
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Survival Data

Cox proportional hazards model

h(t) = h0(t) exp(xβx + zβz),

I h(t): hazard = the instantaneous risk of an event at time t, given that
the event has not occurred until time t

I h0(t): unspecified baseline hazard
I x and z: incomplete and complete covariates, respectively

Survival outcome representation:

I observed event time T
I event indicator D (D = 1: event, D = 0: censored).
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Survival Data

Naive use of MICE

I T and D are treated just like any other variable.
I The resulting imputation model for X would have the form

p(x | T ,D, z) = θ0 + θ1T + θ2D + θ3z + . . . .

The correct conditional distribution of x given the other variables is,
however,

logp(x | T ,D, z) = logp(x | z) +D(βxx + βzz)−H0(T) exp(βxx + βzz) + const.,

where H0(T) is the cumulative baseline hazard. (White & Royston, 2009)
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Survival Data
Using the naively assumed imputation model can lead to severe bias:

x1 (continuous) x2 (binary) x3 (continuous)

original naive
imputation

original naive
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original naive
imputation
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(Results from MICE imputation with two incomplete normal and one
incomplete binary covariate.)
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