EP16: Missing Values in Clinical Research: Multiple Imputation

9. Imputation in Complex Settings

Nicole Erler
Department of Biostatistics, Erasmus Medical Center

-n.erler@erasmusmc.nl

Quadratic Effect

Consider the case where the analysis model (which we assume to be true) is

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots
$$

i.e., y has a quadratic relationship with x, and x is incomplete.

The original data show a curved pattern.

Quadratic Effect

The model used to impute x when using MICE (naively) is

$$
x=\theta_{10}+\theta_{11} y+\ldots
$$

i.e., a linear relation between x and y is assumed.

The imputed values distort the curved pattern of the original data.

Quadratic Effect

The model fitted on the imputed data gives severely biased results; the non-linear shape of the curve has almost completely disappeared.

Interaction Effect

Another example: consider the analysis model (again, assumed to be true)

$$
y=\beta_{0}+\beta_{x} x+\beta_{z} z+\beta_{\mathbf{x z}} \mathbf{x z}+\ldots
$$

i.e., y has a non-linear relationship with x due to the interaction term.

The original data shows a " $<$ " shaped pattern.

Interaction Effect

The model used to impute x when using MICE (naively) is

$$
x=\theta_{10}+\theta_{11} y+\theta_{12} z+\ldots,
$$

i.e., a linear relation between x and y is assumed.

The " $<$ " shaped pattern of the true data is distorted by the imputed values.

Interaction Effect

And the analysis on these naively imputed values leads to severely biased estimates.

X

Longitudinal Outcome

(x_{1}, \ldots, x_{4} are baseline covariates, i.e., not measured repeatedly, e.g. age at baseline, gender, education level, ...)

Longitudinal Outcome

For data in long format:

- each row would be regarded as independent
- \Rightarrow bias and inconsistent imputations

Imputed values of baseline covariates are imputed with different values, creating data that could not have been observed.

ID	y	x_{1}	x_{2}	x_{3}	x_{4}	time
1	\checkmark	\checkmark	girl	\checkmark	\checkmark	0.87
1	\checkmark	\checkmark	boy	\checkmark	\checkmark	2.41
1	\checkmark	\checkmark	girl	\checkmark	\checkmark	4.47
1	\checkmark	\checkmark	girl	\checkmark	\checkmark	6.06
1	\checkmark	\checkmark	_girl	\checkmark	\checkmark	8.96
		,	\checkmark	mid	38.8	3.00
2	\checkmark	\checkmark	\checkmark	high	39.9	4.83
2	\checkmark	\checkmark	\checkmark	mid	40.1	6.45
2	\checkmark	\checkmark	\checkmark	low	39.7	8.08
-	\checkmark	\checkmark	\checkmark	high	-40.7	2.51
3	\checkmark	\checkmark	\checkmark	low	40.4	4.10
3	\checkmark	\checkmark	\checkmark	mid	39.7	6.85
4	\checkmark	\checkmark	boy	\checkmark	\checkmark	$2 . \overline{1}$
4	\checkmark	\checkmark	boy	\checkmark	\checkmark	4.68
4	\checkmark	\checkmark	girl	\checkmark	\checkmark	6.48

Longitudinal Outcome

Estimates can be severely biased.

Longitudinal Outcome

In some settings imputation in wide format may be possible.

ID	y	x_{1}	x_{2}	x_{3}	x_{4}	time
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	0.87
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	2.41
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	4.47
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	6.06
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	8.96
2	\checkmark		\checkmark	- NA^{-}	NA	З3.00 ${ }^{-}$
2	\checkmark	\checkmark	\checkmark	NA	NA	4.83
2	\checkmark	\checkmark	\checkmark	NA	NA	6.45
2	\checkmark	\checkmark	\checkmark	NA	NA	8.08
3	\checkmark	\checkmark	\checkmark	NA	NA	2.51
3	\checkmark	\checkmark	\checkmark	NA	NA	4.10
3	\checkmark	\checkmark	\checkmark	NA	NA	6.85
4	$\checkmark \checkmark$	\checkmark	- NA	\checkmark	\checkmark	'2. $\overline{2} 1$
4	\checkmark	\checkmark	NA	\checkmark	\checkmark	4.68
4	\checkmark	\checkmark	NA	\checkmark	\checkmark	6.48

Longitudinal Outcome

In some settings imputation in wide format may be possible.

ID	y	x_{1}	x_{2}	x_{3}	x_{4}	time
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	0.87
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	2.41
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	4.47
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	6.06
1	\checkmark	\checkmark	NA	\checkmark	\checkmark	8.96
2	\checkmark	\checkmark	\checkmark	- ${ }^{\text {A }}$	NA	З3.00
2	\checkmark	\checkmark	\checkmark	NA	NA	4.83
2	\checkmark	\checkmark	\checkmark	NA	NA	6.45
2	\checkmark	\checkmark	\checkmark	NA	NA	8.08
3	,	\checkmark	\checkmark	NA	NA	2.51
3	\checkmark	\checkmark	\checkmark	NA	NA	4.10
3	\checkmark	\checkmark	\checkmark	NA	NA	6.85
4	\checkmark	\checkmark	- NA	\checkmark	\checkmark	$\overline{2} . \overline{1} \overline{1}$
4	\checkmark	\checkmark	NA	\checkmark	\checkmark	4.68
4	\checkmark	\checkmark	NA	\checkmark	\checkmark	6.48

Longitudinal Outcome

id	y.l	time.1	y.3	time.3	y.5	time.5	y.7	time.7	y.9	time.9	\ldots
1	31.6	0.9	31.8	2.4	31.7	4.5	31.5	6.1	32.5	9	\ldots
2	NA	NA	36.2	3	36.1	4.8	36.1	6.5	36.6	8.1	\ldots
3	NA	NA	29.8	2.5	29.8	4.1	30	6.8	NA	NA	\ldots
4	NA	NA	36.1	2.2	35.9	4.7	36.3	6.5	NA	NA	\ldots
\vdots	\ddots										

In wide format:

- missing values in outcome and measurement times need to be imputed
(to be able to use them as predictors to impute covariates)
- inefficient! (we would not need to impute them for the analysis)

Longitudinal Outcome

Longitudinal Outcome

Very unbalanced data: transformation to wide format not possible.
(Or requires summary
measures)

Longitudinal Outcome

Naive approaches that are sometimes used are to

- ignore the outcome in the imputation

Longitudinal Outcome

Naive approaches that are sometimes used are to

- ignore the outcome in the imputation, or to
- use only the first/baseline outcome

Longitudinal Outcome

Naive approaches that are sometimes used are to

- ignore the outcome in the imputation, or to
- use only the first/baseline outcome
\Rightarrow Important information may be lost!
\Rightarrow invalid imputations and biased results

Survival Data

Cox proportional hazards model

$$
h(t)=h_{0}(t) \exp \left(x \beta_{x}+z \beta_{z}\right),
$$

- $h(t)$: hazard = the instantaneous risk of an event at time t, given that the event has not occurred until time t
- $h_{0}(t)$: unspecified baseline hazard
- x and z : incomplete and complete covariates, respectively

Survival Data

Cox proportional hazards model

$$
h(t)=h_{0}(t) \exp \left(x \beta_{x}+z \beta_{z}\right)
$$

- $h(t)$: hazard = the instantaneous risk of an event at time t, given that the event has not occurred until time t
- $h_{0}(t)$: unspecified baseline hazard
- x and z : incomplete and complete covariates, respectively

Survival outcome representation:

- observed event time T
- event indicator $D(D=1$: event, $D=0$: censored).

Survival Data

Naive use of MICE

- T and D are treated just like any other variable.
- The resulting imputation model for X would have the form

$$
p(x \mid T, D, \mathbf{z})=\theta_{0}+\theta_{1} T+\theta_{2} D+\theta_{3} z+\ldots
$$

Survival Data

Naive use of MICE

- T and D are treated just like any other variable.
- The resulting imputation model for X would have the form

$$
p(x \mid T, D, \mathbf{z})=\theta_{0}+\theta_{1} T+\theta_{2} D+\theta_{3} z+\ldots
$$

The correct conditional distribution of x given the other variables is, however,

$$
\log p(x \mid T, D, z)=\log p(x \mid z)+D\left(\beta_{x} x+\beta_{z} z\right)-H_{0}(T) \exp \left(\beta_{x} x+\beta_{z} z\right)+\text { const., }
$$

where $H_{0}(T)$ is the cumulative baseline hazard. (White \& Royston, 2009)

Survival Data

Using the naively assumed imputation model can lead to severe bias:

(Results from MICE imputation with two incomplete normal and one incomplete binary covariate.)

References

White, I. R., \& Royston, P. (2009). Imputing missing covariate values for the cox model. Statistics in Medicine, 28(15), 1982-1998.

