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Analysis Step

Multiple imputed datasets:
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Analysis Step

Analysis model of interest, e.g.,

X1 = fo+ B1Xo + BoXz + BzXs te



Analysis Step

Analysis model of interest, e.g.,

X1 = fo+ B1Xo + BoXz + BzXs te

Multiple sets of results:
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Pooling

Why pooling?

Recall from Section 1:
We need to represent missing values by a number of imputations.
= m imputed datasets
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Pooling

Why pooling?

Recall from Section 1:
We need to represent missing values by a number of imputations.
= m imputed datasets

From the different imputed datasets we get different sets of parameter
estimates, each of them with a standard error, representing the
uncertainty about the estimate.

We want to summarize the results and describe how (much) the
results vary between the imputed datasets.



Pooling

In the results from multiply imputed data there are two types of
variation/uncertainty:

» within imputation (represented by the confidence intervals)
» between imputation (horizontal shift between results)
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Pooling

To summarize the results, we can take the mean of the results from the
separate analyses. This is the pooled point estimate.
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Pooling

To summarize the results, we can take the mean of the results from the
separate analyses. This is the pooled point estimate.
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But does the same work for the standard error (or bounds of the Cls)?



Pooling

To summarize the results, we can take the mean of the results from the
separate analyses. This is the pooled point estimate.
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But does the same work for the standard error (or bounds of the Cls)?

The averaged Cl's (marked in red) seem to underestimate the total
variation (within + between).



Rubin’s Rules

The most commonly used method to pool results from analyses of
multiply imputed data was introduced by Rubin (1987), hence Rubin’s
Rules.

Notation:

m: number of imputed datasets

Q: quantity of interest (e.g., regr. parameter ) from ¢-th imputation
U,: variance of Q; (e.g., var(B) = se(B)?)

Pooled parameter estimate:
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Rubin’s Rules

The variance of the pooled parameter estimate is calculated from the
within and between imputation variance.

Average within imputation variance:

_ 1§:A
U= — Ug
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Between imputation variance:
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m

Total variance:
T=U+B+B/m



Rubin’s Rules

Confidence intervals for pooled estimates can be obtained using the
pooled standard error /T and a reference t distribution with degrees
of freedom

z/:(m—l)(1+r7nl)2,

(B+B/m)
7]

where rp, = is the relative increase in variance that is due to the

missing values.

The (1 — o) 100% confidence interval is then
Q=+ t,(a/2)VT,

where t, is the a/2 quantile of the t distribution with v degrees of
freedom.



Rubin’s Rules

(Intercept) x2 x3 x4

| 1 | | 1 | | 1 | | 1 |
imp 3= A A i + | H—

| 1 | | 1 | | 1 | | 1 |
Imp 2- | } 1 | 1 II 1 1 | II 1 1 | } | H |

I 1 I I 1 I I 1 I I 1 I

| 1 | | 1 | | 1 | | 1 |
impl- F———T—1 , 1 T T k= Y T 1

- i - P

: : : : : :
parameter estimate & 95% confidence interval



Rubin’s Rules
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The corresponding p-value is the probability
_\2
pr{Fi, > (@ -Q)*/7}.

where F1 , is a random variable that has an F distribution with 1 and v
degrees of freedom, and Qq is the null hypothesis value (typically zero).
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