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Analysis Step

Multiple imputed datasets:
X1 X2 X3 X4
1.4 9.2 1.8 2.0
0.5 12.4 2.3 0.1
-0.5 10.7 2.6 -1.6
...

...
...

...

X1 X2 X3 X4
1.4 13.3 1.8 2.0
0.5 12.4 2.1 0.6
-0.5 10.2 2.6 -1.7
...

...
...

...

X1 X2 X3 X4
1.4 10.0 1.8 2.0
0.5 12.4 2.2 -1.4
-0.5 8.6 2.6 -1.0
...

...
...

...
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Analysis Step

Analysis model of interest, e.g.,
x1 = β0 + β1x2 + β2x3 + β3x4 + ε

Multiple sets of results:
est. se

β0 -0.15 0.22
β1 0.16 0.02
β2 -0.59 0.03
β3 0.28 0.03

est. se
β0 0.19 0.16
β1 0.14 0.01
β2 -0.59 0.03
β3 0.20 0.03

est. se
β0 0.04 0.22
β1 0.14 0.01
β2 -0.58 0.03
β3 0.28 0.03
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Pooling

Why pooling?

Recall from Section 1:
We need to represent missing values by a number of imputations.
á m imputed datasets

From the different imputed datasets we get different sets of parameter
estimates, each of them with a standard error, representing the
uncertainty about the estimate.

We want to summarize the results and describe how (much) the
results vary between the imputed datasets.
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Pooling

In the results frommultiply imputed data there are two types of
variation/uncertainty:

I within imputation (represented by the confidence intervals)
I between imputation (horizontal shift between results)
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parameter estimate & 95% confidence interval
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Pooling
To summarize the results, we can take the mean of the results from the
separate analyses. This is the pooled point estimate.
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But does the same work for the standard error (or bounds of the CIs)?

The averaged CI’s (marked in red) seem to underestimate the total
variation (within + between).
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Rubin’s Rules

The most commonly used method to pool results from analyses of
multiply imputed data was introduced by Rubin (1987), hence Rubin’s
Rules.

Notation:
m: number of imputed datasets
Q`: quantity of interest (e.g., regr. parameter β) from `-th imputation
U`: variance of Q` (e.g., var(β) = se(β)2)

Pooled parameter estimate:

Q̄ =
1
m

m∑
`=1

Q̂`
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Rubin’s Rules
The variance of the pooled parameter estimate is calculated from the
within and between imputation variance.

Average within imputation variance:

Ū =
1
m

m∑
`=1

Û`

Between imputation variance:

B =
1

m− 1

m∑
`=1

(
Q̂` − Q̄

)T (
Q̂` − Q̄

)

Total variance:

T = Ū + B + B/m
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Rubin’s Rules
Confidence intervals for pooled estimates can be obtained using the
pooled standard error

√
T and a reference t distributionwith degrees

of freedom

ν = (m− 1)
(
1 + r−1

m

)2
,

where rm = (B+B/m)
Ū is the relative increase in variance that is due to the

missing values.

The (1− α) 100% confidence interval is then

Q̄± tν(α/2)
√
T ,

where tν is the α/2 quantile of the t distribution with ν degrees of
freedom.
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Rubin’s Rules
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The corresponding p-value is the probability

Pr
{
F1,ν >

(
Q0 − Q̄

)2
/T
}
,

where F1,ν is a random variable that has an F distribution with 1 and ν
degrees of freedom, and Q0 is the null hypothesis value (typically zero).
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