EP16: Missing Values in Clinical Research: Multiple Imputation

2. Imputation Step

Nicole Erler
Department of Biostatistics, Erasmus Medical Center

-n.erler@erasmusmc.nl

Univariate Missing Data

How can we actually get imputed values?

Univariate Missing Data

How can we actually get imputed values?

For now: assume only one continuous variable has missing values (univariate missing data).

X_{1}	X_{2}	X_{3}	X_{4}
\checkmark	NA	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark
\checkmark	NA	\checkmark	\checkmark

Univariate Missing Data

How can we actually get imputed values?

For now: assume only one continuous variable has missing values (univariate missing data).

X_{1}	X_{2}	X_{3}	X_{4}
\checkmark	NA	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark
\checkmark	NA	\checkmark	\checkmark

Idea: Predict values
Model: $x_{i 2}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 3}+\beta_{3} x_{i 4}+\varepsilon_{i}$

Univariate Missing Data

How can we actually get imputed values?

For now: assume only one continuous variable has missing values (univariate missing data).

X_{1}	X_{2}	X_{3}	X_{4}
\checkmark	NA	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark
\checkmark	NA	\checkmark	\checkmark

Idea: Predict values
Model: $x_{i 2}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 3}+\beta_{3} x_{i 4}+\varepsilon_{i}$
Imputed/predicted value:
$\hat{x}_{i 2}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\hat{\beta}_{2} x_{i 3}+\hat{\beta}_{3} x_{i 4}$

Univariate Missing Data

Problem:

- We can obtain only one imputed value per missing value (but we wanted a whole distribution).
- The predicted values do not take into account the added uncertainty due to the missing values.

Univariate Missing Data

Problem:

- We can obtain only one imputed value per missing value (but we wanted a whole distribution).
- The predicted values do not take into account the added uncertainty due to the missing values.
\Rightarrow We need to take into account two sources of uncertainty:
- The parameters are estimated with uncertainty (represented by the standard error).
- There is random variation / prediction error (variation of the residuals).

Univariate Missing Data

Taking into account uncertainty about the parameters:
We assume that β has a distribution, and we can sample realizations of β from that distribution.

When plugging the different realizations of β into the predictive model, we obtain slightly different regression lines.

Univariate Missing Data

Taking into account uncertainty about the parameters:
We assume that β has a distribution, and we can sample realizations of $\boldsymbol{\beta}$ from that distribution.

When plugging the different realizations of β into the predictive model, we obtain slightly different regression lines.

With each set of coefficients, we also get slightly different predicted values.

Univariate Missing Data

Taking into account the prediction error:

The model does not fit the data perfectly: observations are scattered around the regression lines.

We assume that the data have a distribution, where

- the mean for each value is given by the predictive model, and
- the variance is determined by the variance of the residuals ε.

Univariate Missing Data

Taking into account the prediction error:

The model does not fit the data perfectly: observations are scattered around the regression lines.

We assume that the data have a distribution, where

- the mean for each value is given by the predictive model, and
- the variance is determined by the variance of the residuals ε.
\Rightarrow sample imputed values from this distribution.

Univariate Missing Data

Taking into account the prediction error:

The model does not fit the data perfectly: observations are scattered around the regression lines.

We assume that the data have a distribution, where

- the mean for each value is given by the predictive model, and
- the variance is determined by the variance of the residuals ε.
\Rightarrow sample imputed values from this distribution.

In the end, we obtain one imputed dataset for each colour.

Multivariate Missing Data

Multivariate missing data:
What if we have missing values in more than one variable?

Multivariate Missing Data

Multivariate missing data:
What if we have missing values in more than one variable?
In case of monotone missing values we can use the technique for univariate missing data in a chain:
impute x_{4} given x_{1}

x_{1}	x_{2}	x_{3}	x_{4}
\checkmark	NA	\checkmark	\checkmark
\checkmark	NA	NA	\checkmark
\checkmark	NA	NA	NA

impute x_{3} given x_{1} and x_{4} impute x_{2} given x_{1}, x_{4} and x_{3}

Multivariate Missing Data

Multivariate missing data:

What if we have missing values in more than one variable?
In case of monotone missing values we can
use the technique for univariate missing data in a chain:
impute x_{4} given x_{1}
impute x_{3} given x_{1} and x_{4}
impute x_{2} given x_{1}, x_{4} and x_{3}

When we have non-monotone missing data
there is no sequence without conditioning on
When we have non-monotone missing data
there is no sequence without conditioning on unobserved values.

Multivariate Missing Data

There are two popular approaches for the imputation step in multivariate non-monotone missing data:

Fully Conditional Specification

- Multiple Imputation using Chained Equations (MICE)
- sometimes also: sequential regression
- implemented in SPSS, R, Stata, SAS, ...
- our focus here

Multivariate Missing Data

There are two popular approaches for the imputation step in multivariate non-monotone missing data:

Fully Conditional Specification

- Multiple Imputation using Chained Equations (MICE)
- sometimes also: sequential regression
- implemented in SPSS, R, Stata, SAS, ...
- our focus here

Joint Model Imputation

(more details later)

MICE / FCS

MICE (Multiple Imputation using Chained Equations) or FCS (multiple imputation using Fully Conditional Specification)
extends univariable imputation to the setting with multivariate non-monotone missingness:

MICE / FCS

- imputes multivariate missing data on a variable-by-variable basis,
- using the technique for univariate missing data.

MICE / FCS

MICE (Multiple Imputation using Chained Equations) or FCS (multiple imputation using Fully Conditional Specification)
extends univariable imputation to the setting with multivariate non-monotone missingness:

MICE / FCS

- imputes multivariate missing data on a variable-by-variable basis,
- using the technique for univariate missing data.

Moreover, MICE/FCS is

- an iterative procedure, specifically
- a Markov Chain Monte Carlo (MCMC) method,
- uses the idea of the Gibbs sampler

MICE / FCS: Sidenote

Markov Chain Monte Carlo

- a technique to draw samples from a complex probability distribution
- works via creating a chain of random variables (a Markov chain) \Rightarrow The distribution that each element in the chain is sampled from depends on the value of the previous element.
- When certain conditions are met, the chain eventually stabilizes
- samples of the chain are then a sample from the complex distribution of interest

MICE / FCS: Sidenote

Gibbs sampling

- a MCMC method to obtain a sample from a multivariate distribution
- the multivariate distribution is split into a set of univariate full conditional distributions
- a sample from the multivariate distribution can be obtained by repeatedly drawing from each of the univariate distributions

MICE / FCS: Notation

- $X: n \times p$ data matrix with n rows and p variables x_{1}, \ldots, x_{p}
- R : $n \times p$ missing indicator matrix containing 0 (missing) or 1 (observed)

$$
\mathbf{X}=\left\lvert\,\right.
$$

$$
\mathbf{R}=\left|\begin{array}{cccc}
R_{1,1} & R_{1,2} & \ldots & R_{1, p} \\
R_{2,1} & R_{2,2} & \ldots & R_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
R_{n, 1} & R_{n, 2} & \ldots & R_{n, p}
\end{array}\right|
$$

MICE / FCS: Notation

- $x: n \times p$ data matrix with n rows and p variables x_{1}, \ldots, x_{p}
- R : $n \times p$ missing indicator matrix containing 0 (missing) or 1 (observed)

$$
\mathbf{X}=\left\lvert\,\right.
$$

$$
\mathbf{R}=\left|\begin{array}{cccc}
R_{1,1} & R_{1,2} & \ldots & R_{1, p} \\
R_{2,1} & R_{2,2} & \ldots & R_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
R_{n, 1} & R_{n, 2} & \ldots & R_{n, p}
\end{array}\right|
$$

For example:

$$
\mathbf{x}=\begin{array}{cccc}
X_{1} & X_{2} & X_{3} & X_{4} \\
\checkmark & \text { NA } & \checkmark & \checkmark \\
\checkmark & \checkmark & \text { NA } & \text { NA } \\
\checkmark & \text { NA } & \checkmark & \text { NA }
\end{array}
$$

$$
\left.\Rightarrow \mathbf{R}=\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array} \right\rvert\,
$$

The MICE Algorithm (Van Buuren, 2012)

```
1: for \(j\) in \(1, \ldots, p\) :
2: \(\quad\) Specify imputation model for variable \(X_{j}\)
    \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)

3: \(\quad\) Fill in starting imputations \(\dot{X}_{j}^{\circ}\) by random draws from \(X_{j}^{o b s}\).
4: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}

1: for \(j\) in \(1, \ldots, p\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)
3: \(\quad\) Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{o b s}\).
4: end for

5: for \(t\) in \(1, \ldots, T\) :
6: \(\quad\) for \(j\) in \(1, \ldots, p:\)
\(\triangleright\) loop through iterations \(\triangleright\) loop through variables

\section*{10: end for}

11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}

1: for \(j\) in \(1, \ldots, p\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)
3: \(\quad\) Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{o b s}\).
4: end for

5: for \(t\) in \(1, \ldots, T\) :
6: \(\quad\) for \(j\) in \(1, \ldots, p\) :
\(\triangleright\) loop through iterations
Define currently complete data except \(X_{j}\) \(\dot{X}_{-j}^{t}=\left(\dot{X}_{1}^{t}, \ldots, \dot{X}_{j-1}^{t}, \dot{X}_{j+1}^{t-1}, \ldots, \dot{X}_{p}^{t-1}\right)\).

10: end for
11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}

1: for \(j\) in \(1, \ldots, p\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
end for

5: for \(t\) in \(l, \ldots, T\) :
6: \(\quad\) for \(j\) in \(l, \ldots, p\) :
\(\triangleright\) loop through iterations \(\triangleright\) loop through variables

7: \(\quad\) Define currently complete data except \(X_{j}\) \(\dot{X}_{-j}^{t}=\left(\dot{X}_{1}^{t}, \ldots, \dot{X}_{j-1}^{t}, \dot{X}_{j+1}^{t-1}, \ldots, \dot{X}_{p}^{t-1}\right)\).
8: \(\quad\) Draw parameters \(\dot{\theta}_{j}^{t} \sim p\left(\theta_{j}^{t} \mid X_{j}^{o b s}, \dot{X}_{-j}^{t}, R\right)\).
10: end for
11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}

1: for \(j\) in \(1, \ldots, p\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
end for

5: for \(t\) in \(l, \ldots, T\) :
6: \(\quad\) for \(j\) in \(1, \ldots, p\) :
\(\triangleright\) loop through iterations
Define currently complete data except \(X_{j}\) \(\dot{X}_{-j}^{t}=\left(\dot{X}_{1}^{t}, \ldots, \dot{X}_{j-1}^{t}, \dot{X}_{j+1}^{t-1}, \ldots, \dot{X}_{p}^{t-1}\right)\).
8: \(\quad\) Draw parameters \(\dot{\theta}_{j}^{t} \sim p\left(\theta_{j}^{t} \mid X_{j}^{\text {obs }}, \dot{X}_{-j}^{t}, R\right)\).
9: \(\quad\) Draw imputations \(\dot{X}_{j}^{t} \sim p\left(X_{j}^{\text {mis }} \mid \dot{X}_{-j}^{t}, R,,_{j}^{t}\right)\).
10: end for
11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}
for \(j\) in \(1, \ldots, 4\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
4: end for
5: \(\mathbf{f o r} t=1\) :
6: \(\quad\) for \(j=1\) :
\(\triangleright\) loop through iterations
Define currently complete data except \(X_{1}\) \(\dot{X}_{-1}^{1}=\left(\dot{X}_{2}^{0}, \dot{X}_{3}^{0}, \dot{X}_{4}^{0}\right)\).
8: \(\quad \quad\) Draw parameters \(\dot{\theta}_{1}^{1} \sim p\left(\theta_{1}^{1} \mid X_{1}^{o b s}, \dot{X}_{-1}^{1}, R\right)\).
9: \(\quad\) Draw imputations \(\dot{X}_{1}^{1} \sim p\left(X_{1}^{\text {mis }} \mid \dot{X}_{-1}^{1}, R, \dot{\theta}_{1}^{1}\right)\).

\section*{10: end for}

11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}
for \(j\) in \(1, \ldots, 4\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{o b s}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
4: end for
5: \(\mathbf{f o r} t=1\) :
6: \(\quad\) for \(j=2\) :
\(\triangleright\) loop through iterations
Define currently complete data except \(X_{2}\) \(\dot{X}_{-2}^{1}=\left(\dot{X}_{1}^{1}, \dot{X}_{3}^{0}, \dot{X}_{4}^{0}\right)\).
8: \(\quad \quad\) Draw parameters \(\dot{\theta}_{2}^{1} \sim p\left(\theta_{2}^{1} \mid X_{2}^{o b s}, \dot{X}_{-2}^{1}, R\right)\).
9: \(\quad\) Draw imputations \(\dot{X}_{2}^{1} \sim p\left(X_{2}^{m i s} \mid \dot{X}_{-2}^{1}, R, \dot{\theta}_{2}^{1}\right)\).
10: end for
11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}
for \(j\) in \(1, \ldots, 4\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{o b s}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
4: end for
5: for \(t=1\) :
6: \(\quad\) for \(j=3\) :
\(\triangleright\) loop through iterations
Define currently complete data except \(X_{3}\) \(\dot{X}_{-3}^{1}=\left(\dot{X}_{1}^{1}, \dot{X}_{2}^{1}, \dot{X}_{4}^{0}\right)\).
8: \(\quad \quad\) Draw parameters \(\dot{\theta}_{3}^{1} \sim p\left(\theta_{3}^{1} \mid X_{3}^{o b s}, \dot{X}_{-3}^{1}, R\right)\).
9: \(\quad\) Draw imputations \(\dot{X}_{3}^{1} \sim p\left(X_{3}^{m i s} \mid \dot{X}_{-3}^{1}, R, \dot{\theta}_{3}^{1}\right)\).

\section*{10: end for}

11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}
for \(j\) in \(1, \ldots, 4\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
4: end for
5: \(\mathbf{f o r} t=1\) :
\(\triangleright\) loop through iterations
6: for \(j=4: \quad \triangleright\) loop through variables
7: \(\quad\) Define currently complete data except \(X_{4}\) \(\dot{X}_{-4}^{1}=\left(\dot{X}_{1}^{1}, \dot{X}_{2}^{1}, \dot{X}_{3}^{1}\right)\).
8: \(\quad\) Draw parameters \(\dot{\theta}_{4}^{1} \sim p\left(\theta_{4}^{1} \mid X_{4}^{o b s}, \dot{X}_{-4}^{1}, R\right)\).
9: \(\quad\) Draw imputations \(\dot{X}_{4}^{1} \sim p\left(X_{4}^{m i s} \mid \dot{X}_{-4}^{1}, R, \dot{\theta}_{4}^{1}\right)\).

\section*{10: end for}

11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}
for \(j\) in \(1, \ldots, 4\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{o b s}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
4: end for
5: \(\mathbf{f o r} t=2\) :
6: \(\quad\) for \(j=1\) :
\(\triangleright\) loop through iterations
Define currently complete data except \(X_{1}\) \(\dot{X}_{-1}^{2}=\left(\dot{X}_{2}^{1}, \dot{X}_{3}^{1}, \dot{X}_{4}^{1}\right)\).
8: \(\quad\) Draw parameters \(\dot{\theta}_{1}^{2} \sim p\left(\theta_{1}^{2} \mid X_{1}^{o b s}, \dot{X}_{-1}^{2}, R\right)\).
9: \(\quad\) Draw imputations \(\dot{X}_{1}^{2} \sim p\left(X_{1}^{m i s} \mid \dot{X}_{-1}^{2}, R, \dot{\theta}_{1}^{2}\right)\).

\section*{10: end for}

11: end for

\section*{The MICE Algorithm (Van Buuren, 2012)}
for \(j\) in \(1, \ldots, 4\) :
\(\triangleright\) Setup
2: \(\quad\) Specify imputation model for variable \(X_{j}\) \(p\left(X_{j}^{\text {mis }} \mid X_{j}^{\text {obs }}, X_{-j}, R\right)\)
3: Fill in starting imputations \(\dot{X}_{j}^{0}\) by random draws from \(X_{j}^{\text {obs }}\).
4: end for
5: \(\mathbf{f o r} t=2\) :
6: \(\quad\) for \(j=2\) :
\(\triangleright\) loop through iterations
Define currently complete data except \(X_{2}\) \(\dot{X}_{-2}^{2}=\left(\dot{X}_{1}^{2}, \dot{X}_{3}^{1}, \dot{X}_{4}^{1}\right)\).
8: \(\quad\) Draw parameters \(\dot{\theta}_{2}^{2} \sim p\left(\theta_{2}^{2} \mid X_{2}^{o b s}, \dot{X}_{-2}^{2}, R\right)\).
9: \(\quad\) Draw imputations \(\dot{X}_{2}^{2} \sim p\left(X_{2}^{m i s} \mid \dot{X}_{-2}^{2}, R, \dot{\theta}_{2}^{2}\right)\).
10: end for
11: end for

\section*{The MICE Algorithm}

The imputed values from the last iteration,
\[
\left(\dot{X}_{1}^{\top}, \ldots, \dot{X}_{p}^{\top}\right)
\]
are then used to replace the missing values in the original data.
One run through the algorithm \(\Rightarrow\) one imputed dataset.

\section*{The MICE Algorithm}

The imputed values from the last iteration,
\[
\left(\dot{X}_{1}^{T}, \ldots, \dot{X}_{p}^{T}\right)
\]
are then used to replace the missing values in the original data.
One run through the algorithm \(\boldsymbol{\rightarrow}\) one imputed dataset.
\(\Rightarrow\) To obtain \(m\) imputed datasets: repeat \(m\) times

\section*{Iterations \& Convergence}
- The sequence of imputations for one missing value (from starting value to final iteration) is called a chain.
- Each run through the MICE algorithm produces one chain per missing value.

\section*{Why iterations?}

\section*{Iterations \& Convergence}
- The sequence of imputations for one missing value (from starting value to final iteration) is called a chain.
- Each run through the MICE algorithm produces one chain per missing value.

\section*{Why iterations?}
- Imputed values in one variable depend on the imputed values of the other variables (Gibbs sampling).
- If the starting values (random draws) are far from the actual distribution, imputed values from the first few iterations are not draws from the distribution of interest.

\section*{Iterations \& Convergence}

How many iterations?
Until convergence
= when the sampling distribution does not change any more (Note: the imputed value will still vary between iterations.)

\section*{Iterations \& Convergence}

How many iterations?
Until convergence
= when the sampling distribution does not change any more
(Note: the imputed value will still vary between iterations.)

How to evaluate convergence?
The traceplot (x-axis: iteration number, \(y\)-axis: imputed value) should show a horizontal band

\section*{Checking Convergence}


Each chain is the sequence of imputed values (from starting value to final imputed value) for the same missing value.

\section*{Checking Convergence}


Each chain is the sequence of imputed values (from starting value to final imputed value) for the same missing value.

\section*{Checking Convergence}

In imputation we have
- several variables with missing values (e.g., p)
- several missing values in each of these variables
- m chains for each missing value
\(\Rightarrow\) possibly a large number of MCMC chains

To check all chains separately could be very time consuming in large datasets.

\section*{Checking Convergence}

In imputation we have
- several variables with missing values (e.g., p)
- several missing values in each of these variables
- m chains for each missing value
\(\Rightarrow\) possibly a large number of MCMC chains

To check all chains separately could be very time consuming in large datasets.

Alternative: Calculate and plot a summary (e.g., the mean) of the imputed values over all subjects, separately per chain and variable \(\Rightarrow\) only \(m \times p\) chains to check

\section*{Checking Convergence}
(

\section*{Checking Convergence}
imputation 1


\section*{Checking Convergence}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}
imputation 1
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}


\section*{Checking Convergence}

imputation 1



\section*{References}

Van Buuren, S. (2012). Flexible Imputation of Missing Data. Taylor \& Francis. https://stefvanbuuren.name/fimd/```

