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Univariate Missing Data

How can we actually get imputed values?

X1 X2 Xz X4

For now: assume only one continuous variable v NA v v
v vV

has missing val nivari missin .
as missing values (univariate missing data) CONA

® observed
O missing L 3 °

Idea: Predict values
Model: xj2 = o + f1Xj1 *+ BaXijz + B3Xjs * €

Imputed/predicted value:
Xip = Bo + f1Xi1 + B2Xiz + B3Xi4




Univariate Missing Data

Problem:

» We can obtain only one imputed value per missing value (but we
wanted a whole distribution).

» The predicted values do not take into account the added
uncertainty due to the missing values.



Univariate Missing Data

Problem:

» We can obtain only one imputed value per missing value (but we
wanted a whole distribution).

» The predicted values do not take into account the added
uncertainty due to the missing values.

= \\e need to take into account two sources of uncertainty:

» The parameters are estimated with uncertainty
(represented by the standard error).

» There is random variation / prediction error
(variation of the residuals).



Univariate Missing Data

Taking into account uncertainty about the parameters:
We assume that 3 has a distribution, and we can sample realizations of
B from that distribution.
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Univariate Missing Data

Taking into account uncertainty about the parameters:
We assume that 3 has a distribution, and we can sample realizations of
B from that distribution.
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Univariate Missing Data

Taking into account the prediction error:
The model does not fit the data perfectly: observations are scattered
around the regression lines.

We assume that the data have a cerved
distribution, where s missing

» the mean for each value is given
by the predictive model, and

» the variance is determined by X
the variance of the residuals e.
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Univariate Missing Data

Taking into account the prediction error:
The model does not fit the data perfectly: observations are scattered
around the regression lines.

We assume that the data have a e observed
distribution, where o missing
. . % imputed
» the mean for each value is given * *
by the predictive model, and g
» the variance is determined by X' %
the variance of the residuals e. ¥ ¥
= sample imputed values from %
this distribution.
o o Xl o

In the end, we obtain one imputed dataset for each colour.

Aoldle



Multivariate Missing Data

Multivariate missing data:
What if we have missing values in more than one variable?
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Multivariate missing data:
What if we have missing values in more than one variable?
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Multivariate Missing Data

Multivariate missing data:

What if we have missing values in more than one variable?

In case of monotone missing values we can
use the technique for univariate missing data
in a chain:

impute x4 given x1

impute xz given x1 and x4

impute x> given x1, X4 and xz

When we have non-monotone missing data
there is no sequence without conditioning on
unobserved values.

NA

X1 Xo Xz Xa
v NA v v
v NA NA
v NA NA NA

X1 Xo Xz Xa
/. NA v v
v v NA NA
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Multivariate Missing Data

There are two popular approaches for the imputation step in
multivariate non-monotone missing data:
Fully Conditional Specification

> Multiple Imputation using Chained Equations (MICE)

> sometimes also: sequential regression

» implemented in SPSS, R, Stata, SAS, ...

» our focus here




Multivariate Missing Data

There are two popular approaches for the imputation step in
multivariate non-monotone missing data:
Fully Conditional Specification

> Multiple Imputation using Chained Equations (MICE)

> sometimes also: sequential regression

» implemented in SPSS, R, Stata, SAS, ...

» our focus here

Joint Model Imputation
(more details later)




MICE / FCS

MICE (Multiple Imputation using Chained Equations) or
FCS (multiple imputation using Fully Conditional Specification)

extends univariable imputation to the setting with multivariate
non-monotone missingness:
MICE / FCS

» imputes multivariate missing data on a variable-by-variable basis,
» using the technique for univariate missing data.



MICE / FCS

MICE (Multiple Imputation using Chained Equations) or
FCS (multiple imputation using Fully Conditional Specification)

extends univariable imputation to the setting with multivariate
non-monotone missingness:
MICE / FCS

» imputes multivariate missing data on a variable-by-variable basis,
» using the technique for univariate missing data.

Moreover, MICE/FCS is

» an iterative procedure, specifically
» a Markov Chain Monte Carlo (MCMC) method,
» uses the idea of the Gibbs sampler



MICE / FCS: Sidenote

Markov Chain Monte Carlo

» atechnique to draw samples from a complex probability
distribution

» works via creating a chain of random variables (a Markov chain)
= The distribution that each element in the chain is sampled from
depends on the value of the previous element.

> When certain conditions are met, the chain eventually stabilizes

» samples of the chain are then a sample from the complex
distribution of interest



MICE / FCS: Sidenote

Gibbs sampling

» a MCMC method to obtain a sample from a multivariate
distribution

> the multivariate distribution is split into a set of univariate full
conditional distributions

> a sample from the multivariate distribution can be obtained by
repeatedly drawing from each of the univariate distributions



MICE / FCS: Notation

» X:n x p data matrix with n rows and p variables x1,...,Xxp
> R: n x p missing indicator matrix containing O (missing) or 1
(observed)

X > X% X 5
X171 X172 X17p R]_]_ R12 :Q]_”O

) )

X=|X21 X22 ... X27p R= RZ 1 Rz 2 ... ‘Q2,p

) )

Xn1  Xn2 - Xnp Rn1 Rn2 ... Rnp
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MICE / FCS: Notation

» X:n x p data matrix with n rows and p variables x1,...,Xxp
> R: n x p missing indicator matrix containing O (missing) or 1
(observed)
X_o X5 X_>
X11 X122 ... Xip Rl,l R172 :Q]_”O
X=|X21 X22 ... Xop R= RZ,]_ Rz’z ‘Q2,p
Xn1  Xn2 - Xnp Rn1 Rn2 Rnp
For example:
o Lo 1
X= /v NA NA =R=1 100
1 0 1 O

v. NA v NA
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The MICE Algorithm (Van Buuren, 2012)

1. forjinl,... p:

2: Specify imputation model for variable X;
PIXS | X9 X_; )
3: Fill in starting imputations on by random draws from bes.

4: end for

> Setup

11
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1. forjinl,... p: > Setup
2: Specify imputation model for variable X;
PIXS | XPP% X_;R)

3: Fill in starting imputations on by random draws from bes.
4: end for
5. fortinl,...,T: > loop through iterations
6: forjinl,...,p: > loop through variables
7: Define currently complete data except X;

e . 1 1

Xt; = (Xi,...,)(f_l,)gﬂl s X )

10: end for
11: end for
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The MICE Algorithm (Van Buuren, 2012)

1. forjinl,... p: > Setup
2: Specify imputation model for variable X;

p()gmls | )<j'0b57X—j7 R)
3: Fill in starting imputations on by random draws from bes.
4: end for
5. fortinl,...,T: > loop through iterations
6: forjinl,...,p: > loop through variables
7 Define currently complete data except X;

X = (XSG, XE X XE),

8: Draw parameters 6f ~ p(6f | XP°%, X", R).

10: end for
11: end for
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The MICE Algorithm (Van Buuren, 2012)

1. forjinl,... p: > Setup
2: Specify imputation model for variable X;

p()gmls | )<j'0b57X—j7 R)
3: Fill in starting imputations on by random draws from bes.
4: end for
5. fortinl,...,T: > loop through iterations
6: forjinl,...,p: > loop through variables
7: Define currently complete data except X;

X = (XSG, XE X XE),

8: Draw parameters 6f ~ p(6f | XP°%, X", R).
9 Draw imputations Xf ~ ,o(ijiS y Xt_j, R, 6}).

10: end for
11: end for
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The MICE Algorithm (Van Buuren, 2012)

1. forjinl, ... 4: > Setup
2: Specify imputation model for variable X;
PUXTS | X905 X )

3. Fillin starting imputations XP by random draws from X°°s.
4: end for
5. fort = 1: > loop through iterations
6: forj=1: > loop through variables
7: Define currently complete data except X;
X1y = (X9.%9.%9).
8: Draw parameters 61 ~ p(f1 | X265, X1, R).
9: Draw imputations X1 ~ p(X7" | X1, R, 671).

10: end for
11: end for
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The MICE Algorithm (Van Buuren, 2012)

1. forjinl, ... 4: > Setup
2: Specify imputation model for variable X;
PUXTS | X905 X )

3. Fillin starting imputations XP by random draws from X°°s.
4: end for
5. fort = 1: > loop through iterations
6: forj = 2: > loop through variables
7: Define currently complete data except X5
X1, = (X3.X9.%9).
8: Draw parameters 63 ~ p(03 | X395, X1, R).
9: Draw imputations X3 ~ p(X3"s | X1, R, 63).

10: end for
11: end for
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The MICE Algorithm (Van Buuren, 2012)

1. forjinl, ... 4: > Setup
2: Specify imputation model for variable X;
PUXTS | X905 X )

3. Fillin starting imputations XP by random draws from X°°s.
4: end for
5. fort = 1: > loop through iterations
6: forj = 3: > loop through variables
7: Define currently complete data except X3
Xy = (X4.53.%9).
8: Draw parameters 63 ~ p(03 | X255, X5, R).
9: Draw imputations X3 ~ p(X7" | X1, R, 63).

10: end for
11: end for

12



The MICE Algorithm (Van Buuren, 2012)

1. forjinl, ... 4: > Setup
2: Specify imputation model for variable X;
PUXTS | X905 X )

3. Fillin starting imputations XP by random draws from X°°s.
4: end for
5. fort = 1: > loop through iterations
6: forj = 4: > loop through variables
7: Define currently complete data except X,
X1, = (X}.53.%3).
8: Draw parameters 0; ~ p(0 | X265, X1, R).
9: Draw imputations X} ~ p(X7" | X1, R, 0}).

10: end for
11: end for

12



The MICE Algorithm (Van Buuren, 2012)

1. forjinl, ... 4: > Setup
2: Specify imputation model for variable X;
PUXTS | X905 X )

3. Fillin starting imputations XP by random draws from X°°s.
4: end for
5. fort = 2: > loop through iterations
6: forj=1: > loop through variables
7: Define currently complete data except X;
X2, = (X3.%3.%2).
8: Draw parameters 93 ~ p(6? | bef,Xfl, R).
9 Draw imputations X3 ~ p(X7" | X2, R, 6%).

10: end for
11: end for

12



The MICE Algorithm (Van Buuren, 2012)

1. forjinl, ... 4: > Setup
2: Specify imputation model for variable X;
PUXTS | X905 X )

3. Fillin starting imputations XP by random draws from X°°s.
4: end for
5. fort = 2: > loop through iterations
6: forj = 2: > loop through variables
7: Define currently complete data except X5
X2, = (X3.%3.%2).
8: Draw parameters 63 ~ p(03 | X35, X2, R).
9: Draw imputations X3 ~ p(X3"s | X2, R, 63).

10: end for
11: end for

12



The MICE Algorithm

The imputed values from the last iteration,

(XI,....XT),

are then used to replace the missing values in the original data.

One run through the algorithm = one imputed dataset.
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The MICE Algorithm

The imputed values from the last iteration,

(X{,...,Xg) :

are then used to replace the missing values in the original data.

One run through the algorithm = one imputed dataset.

= To obtain m imputed datasets: repeat m times
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Iterations & Convergence

» The sequence of imputations for one missing value (from starting
value to final iteration) is called a chain.

» Each run through the MICE algorithm produces one chain per
missing value.

Why iterations?
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Iterations & Convergence

» The sequence of imputations for one missing value (from starting
value to final iteration) is called a chain.

» Each run through the MICE algorithm produces one chain per
missing value.

Why iterations?

» Imputed values in one variable depend on the imputed values of
the other variables (Gibbs sampling).

» If the starting values (random draws) are far from the actual
distribution, imputed values from the first few iterations are not
draws from the distribution of interest.

14



Iterations & Convergence

How many iterations?

Until convergence

= when the sampling distribution does not change any more
(Note: the imputed value will still vary between iterations.)

15



Iterations & Convergence

How many iterations?

Until convergence

= when the sampling distribution does not change any more
(Note: the imputed value will still vary between iterations.)

How to evaluate convergence?
The traceplot (x-axis: iteration number, y-axis: imputed value) should
show a horizontal band

15



Checking Convergence

e Th

M Mwmmm vl

— chain 1

— chain 2

— chain 3

0 500 1000 1500 2000
iteration

Each chain is the sequence of imputed values (from starting value to
final imputed value) for the same missing value.
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Checking Convergence

— chain1

— chain2

— chain3

0 500 1000 1500 2000
iteration

Each chain is the sequence of imputed values (from starting value to
final imputed value) for the same missing value.
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Checking Convergence

In imputation we have

» several variables with missing values (e.g., p)
» several missing values in each of these variables
» m chains for each missing value

= possibly a large number of MCMC chains

To check all chains separately could be very time consuming in large
datasets.

17



Checking Convergence

In imputation we have

» several variables with missing values (e.g., p)
» several missing values in each of these variables
» m chains for each missing value

= possibly a large number of MCMC chains

To check all chains separately could be very time consuming in large
datasets.

Alternative: Calculate and plot a summary (e.g., the mean) of the
imputed values over all subjects, separately per chain and variable
= only m x p chains to check

17



Checking Convergence
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imputation number: — 1 — 2 — 3
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Checking Convergence

imputation 1

imputed value

iteration
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Checking Convergence
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imputation 1
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Checking Convergence

imputation 1

imputed value
imputed value

iteration

imputation 1

iteration

30

imputed value
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