EP16: Missing Values in Clinical Research: Multiple Imputation

1. What is Multiple Imputation?

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

≤ n.erler@erasmusmc.nl

Developed by Donald B. Rubin in the 1970s

- Developed by Donald B. Rubin in the 1970s
- to handle missing values in **public use databases** (e.g., census data provided by the government),

- Developed by Donald B. Rubin in the 1970s
- to handle missing values in **public use databases** (e.g., census data provided by the government),
- motivated by the increase in missing values, and

- Developed by Donald B. Rubin in the 1970s
- to handle missing values in **public use databases** (e.g., census data provided by the government),
- motivated by the increase in missing values, and
- increased availability of computers.

- Developed by Donald B. Rubin in the 1970s
- to handle missing values in **public use databases** (e.g., census data provided by the government),
- motivated by the increase in missing values, and
- increased availability of computers.

- Developed by Donald B. Rubin in the 1970s
- to handle missing values in **public use databases** (e.g., census data provided by the government),
- motivated by the increase in missing values, and
- increased availability of computers.

Goal: data should be usable by (Rubin, 1996)

► a large number of analysts, who commonly have to rely on

- Developed by Donald B. Rubin in the 1970s
- to handle missing values in **public use databases** (e.g., census data provided by the government),
- motivated by the increase in missing values, and
- increased availability of computers.

Goal: data should be usable by (Rubin, 1996)

- a large number of analysts, who commonly have to rely on
- standard software that can only handle complete data, and usually

- Developed by Donald B. Rubin in the 1970s
- to handle missing values in **public use databases** (e.g., census data provided by the government),
- motivated by the increase in missing values, and
- increased availability of computers.

Goal: data should be usable by (Rubin, 1996)

- ► a large number of analysts, who commonly have to rely on
- standard software that can only handle complete data, and usually
- > are not experts in handling incomplete data.

History & Ideas (Rubin, 2004)

One imputed value cannot be correct in general. → We need to represent missing values by a **number of imputations**. To find **sensible values** to fill in, we need some kind of **model**.

History & Ideas (Rubin, 2004)

History & Ideas (Rubin, 2004)

2

How to obtain that predictive distribution?

How to obtain that predictive distribution?

- fit a model to the observed data ("respondents"), and to
- obtain for each "nonrespondent" the conditional distribution of the missing data (given the observed data) as if he/she was a respondent.

→ We assume that **nonrespondents are just like respondents**, and obtain the predictive distribution from the model of the respondents' data.

How to obtain that predictive distribution?

- fit a model to the observed data ("respondents"), and to
- obtain for each "nonrespondent" the conditional distribution of the missing data (given the observed data) as if he/she was a respondent.

→ We assume that **nonrespondents are just like respondents**, and obtain the predictive distribution from the model of the respondents' data.

Example: survey including age, gender and height

10 – 12 year old boys answered (on average) that they are 1.45m tall.

➡ We assume that boys aged 10 to 12 who did not report their height are also around 1.45m tall.

How to represent the multiple imputed values?

For each missing value, we now have multiple imputed values.

How to represent the multiple imputed values?

For each missing value, we now have multiple imputed values.

- For each set of imputed values, create a dataset (datasets agree in the observed values but imputed values differ).
- Analyse each dataset.
- Combine the results from all analyses.

How to represent the multiple imputed values?

For each missing value, we now have multiple imputed values.

- For each set of imputed values, create a dataset (datasets agree in the observed values but imputed values differ).
- Analyse each dataset.
- Combine the results from all analyses.

→ We can describe how (much) the results vary between the imputed datasets, and calculate summary measures.

Three Steps

In summary:

- 1. Imputation: impute multiple times multiple completed datasets
- 2. Analysis: analyse each of the datasets
- 3. Pooling: combine results, taking into account additional uncertainty

Rubin, D. B. (1996). Multiple imputation after 18+ years. *Journal of the American Statistical Association*, 91(434), 473–489. https://doi.org/10.2307/2291635

Rubin, D. B. (2004). The design of a general and flexible system for handling nonresponse in sample surveys. *The American Statistician*, *58*(4), 298–302. https://doi.org/10.1198/000313004X6355