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History & Ideas

I Developed by Donald B. Rubin in the 1970s

I to handle missing values in public use databases (e.g., census data
provided by the government),

I motivated by the increase in missing values, and
I increased availability of computers.

Goal: data should be usable by (Rubin, 1996)

I a large number of analysts, who commonly have to rely on
I standard software that can only handle complete data, and usually
I are not experts in handling incomplete data.
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History & Ideas (Rubin, 2004)

One imputed value cannot be
correct in general.
á We need to represent missing
values by a number of imputations.

á

To find sensible values to fill in,
we need some kind of model.

á
Missing data has a distribution. á

This distribution depends
on assumptions that have
been made about the model.á

What we want is the ‘predictive distribution’ of the missing values
given the observed values.
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History & Ideas

How to obtain that predictive distribution?

I fit a model to the observed data (“respondents”), and to
I obtain for each “nonrespondent” the conditional distribution of the

missing data (given the observed data) as if he/she was a respondent.

á We assume that nonrespondents are just like respondents, and
obtain the predictive distribution from the model of the respondents’
data.

Example: survey including age, gender and height
10 – 12 year old boys answered (on average) that they are 1.45m tall.

á We assume that boys aged 10 to 12 who did not report their
height are also around 1.45m tall.

3



History & Ideas

How to obtain that predictive distribution?
I fit a model to the observed data (“respondents”), and to
I obtain for each “nonrespondent” the conditional distribution of the

missing data (given the observed data) as if he/she was a respondent.

á We assume that nonrespondents are just like respondents, and
obtain the predictive distribution from the model of the respondents’
data.

Example: survey including age, gender and height
10 – 12 year old boys answered (on average) that they are 1.45m tall.

á We assume that boys aged 10 to 12 who did not report their
height are also around 1.45m tall.

3



History & Ideas

How to obtain that predictive distribution?
I fit a model to the observed data (“respondents”), and to
I obtain for each “nonrespondent” the conditional distribution of the

missing data (given the observed data) as if he/she was a respondent.

á We assume that nonrespondents are just like respondents, and
obtain the predictive distribution from the model of the respondents’
data.

Example: survey including age, gender and height
10 – 12 year old boys answered (on average) that they are 1.45m tall.

á We assume that boys aged 10 to 12 who did not report their
height are also around 1.45m tall.

3



History & Ideas

How to represent the multiple imputed values?
For each missing value, we now have multiple imputed values.

I For each set of imputed values, create a dataset
(datasets agree in the observed values but imputed values differ).

I Analyse each dataset.
I Combine the results from all analyses.

á We can describe how (much) the results vary between the imputed
datasets, and calculate summary measures.
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Three Steps

 

incomplete 

data 

multiple 
imputed 
datasets 

pooled 

results 

analysis 

results 

In summary:
1. Imputation: impute multiple times á multiple completed datasets
2. Analysis: analyse each of the datasets
3. Pooling: combine results, taking into account additional uncertainty
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