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The Regression Line
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Finding the Best Regression Line
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Residuals
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Simple Linear Regression

Notation:
yi = Bo + Biz; + &, 1=1,...,n
regression line
Y; outcome / response / dependent variable
T; covariate / explanatory variable / predictor variable / independent variable /
regressor
E; error (term)

50, 51 (regression) coefficients / parameters / effects

Bo intercept (in SPSS: constant)



Residuals vs Error Terms

Note:

residuals (€;) # error terms (g;)

g;. true errors, unknown

£ ;. estimates of the error terms

Ei =y — (By + Brxi)
=Y — 50 — 61332'

Bo and Bl are estimates of 8y and ;.



Assumptions / Characteristics

The systematic component 3y + [1x is

e additive and
e linear in the regression coefficients,
l.e., a linear combination of the covariates.
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Assumptions / Characteristics

The systematic component 3y + [1x is

e additive and
e linear in the regression coefficients,
l.e., a linear combination of the covariates.

By and B are unknown and have to be estimated.

The error term ¢ is additive, random, and independently and identically
distributed.

Moreover:

« E(g;) = 0 (no systematic error)
J Var(é‘?;) — g2 (equal variance)
e cov(e;,e5) = 0,Ve # j (independence)



Assumptions / Characteristics

The properties of the error term translate to the response variable:
« E(y;) = Bo + B
e var(y;) = o?
e cov(y;,y;) =0

= We assume that the y; are

e all from the same distribution,
« except for a shift in the expected value, given by 8y + Bz,
e and that they are independent of each other.



Estimation: Minimizing Residuals

Find By, 81 so that the regression line fits the data best, i.e, minimizes the
residuals ¢ ;.

Idea:

S

£; — min
/807181



Estimation: Minimizing Residuals
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The Ordinary Least Squares (OLS) Estimator

In formal notation:

- (y; — Bo — Prz;)* — min
i—=1 i—=1 /80’61

The least squares estimates B, and 8, are those values that minimize the sum of
squared residuals.
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Why Squared Residuals?

To avoid residuals cancelling each other out, squared residuals are not the only
solution.

Alternative: Minimize the sum of the absolute residuals:

n

Z €;| — min
i—1 /80351

= Results in Median Regression
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Why Squared Residuals?

To avoid residuals cancelling each other out, squared residuals are not the only
solution.

Alternative: Minimize the sum of the absolute residuals:
n
Z €;| — min
. /80761
1=1
= Results in Median Regression

Why is OLS the standard?

e OLS gives a unique optimal solution.
e Ifg; ~ N(0,0?) OLS gives the same solution as maximum likelihood.

e OLS has other mathematical advantages.
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