Biostatistics I: Linear Regression

Simple Linear Regression

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

n.erler@erasmusmc.nl

♥ @N_Erler

Motivation

Motivation

The Regression Line

2

Finding the Best Regression Line

Residuals

Simple Linear Regression

Notation:

$$y_i = egin{array}{c} eta_0 + eta_1 x_i \ ext{regression line} \end{array} + arepsilon_i, \qquad i=1,\ldots,n$$

- y_i outcome / response / dependent variable
- x_i covariate / explanatory variable / predictor variable / independent variable / regressor
- ε_i error (term)
- eta_0,eta_1 (regression) coefficients / parameters / effects
- β_0 intercept (in SPSS: constant)

Note:

residuals $(\hat{\varepsilon}_i) \neq \text{ error terms } (\varepsilon_i)$

 ε_i : true errors, unknown

 $\hat{\varepsilon}_i$: estimates of the error terms

$$egin{aligned} \hat{arepsilon}_i &= y_i - ({\hat{eta}}_0 + {\hat{eta}}_1 x_i) \ &= y_i - {\hat{eta}}_0 - {\hat{eta}}_1 x_i \end{aligned}$$

 $\hat{\beta}_0$ and $\hat{\beta}_1$ are **estimates** of β_0 and β_1 .

The systematic component $eta_0+eta_1 x$ is

- additive and
- **linear** in the regression coefficients,

i.e., a *linear combination* of the covariates.

The systematic component $eta_0+eta_1 x$ is

- additive and
- **linear** in the regression coefficients,

i.e., a *linear combination* of the covariates.

 β_0 and β_1 are **unknown** and have to be estimated.

The systematic component $eta_0+eta_1 x$ is

- additive and
- **linear** in the regression coefficients,
 - i.e., a *linear combination* of the covariates.

 β_0 and β_1 are **unknown** and have to be estimated.

The error term ϵ is additive, random, and independently and identically distributed.

Moreover:

- $\mathrm{E}(arepsilon_i)=0$ (no systematic error)
- $\operatorname{var}(arepsilon_i) = \sigma^2$ (equal variance)
- $\operatorname{cov}(arepsilon_i,arepsilon_j)=0, orall i
 eq j$ (independence)

The properties of the error term translate to the response variable:

- $\mathrm{E}(y_i)=eta_0+eta_1x_i$
- $\operatorname{var}(y_i) = \sigma^2$
- $\operatorname{cov}(y_i,y_j)=0$

 \Rightarrow We assume that the y_i are

- all from the same distribution,
- except for a **shift** in the expected value, given by $eta_0+eta_1 x$,
- and that they are **independent** of each other.

Estimation: Minimizing Residuals

Find β_0 , β_1 so that the regression line fits the data best, i.e., **minimizes the** residuals $\hat{\varepsilon}_i$.

Idea:

Estimation: Minimizing Residuals

The Ordinary Least Squares (OLS) Estimator

In formal notation:

$$\sum_{i=1}^n \hat{arepsilon}_i^2 = \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)^2 \longrightarrow \min_{eta_0,eta_1}$$

The least squares estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are those values that **minimize the sum of** squared residuals.

Why Squared Residuals?

To avoid residuals cancelling each other out, squared residuals are not the only solution.

Alternative: Minimize the sum of the absolute residuals:

$$\sum_{i=1}^n |\hat{arepsilon}_i| \longrightarrow \min_{eta_0,eta_1}$$

⇒ Results in **Median Regression**

Why Squared Residuals?

To avoid residuals cancelling each other out, squared residuals are not the only solution.

Alternative: Minimize the sum of the absolute residuals:

$$\sum_{i=1}^n |\hat{arepsilon}_i| \longrightarrow \min_{eta_0,eta_1}$$

⇒ Results in **Median Regression**

Why is OLS the standard?

- OLS gives a **unique** optimal solution.
- If $arepsilon_i \sim N(0,\sigma^2)$ OLS gives the same solution as maximum likelihood.
- OLS has other mathematical advantages.