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Linear Regression & Assumptions
Linear Regression Model:

 

We need to evaluate assumptions about

the error terms:

homoscedastic
uncorrelated
(normally distributed)

covariates and effects:

linear effects (i.e., linear in the parameters)
no (multi)collinearity between covariates

and check for outliers and in�uential observations .

yi = x
⊤
i β + εi, E(εi) = 0, var(εi) = σ2
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Example: Child Growth
Simple linear model:    heighti = β0 + β1agei + εi
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Outliers & Leverage
Simple linear model:    heighti = β0 + β1agei + εi
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Outliers & Leverage
An outlier is an observation that "does not �t the model".

A high leverage point is an observation with extreme predictor value(s), for
example with

an extremely high or low value in a particular covariate, or
an unusual combination of covariate values.
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Leverage Values
The leverage of observation  is the -th diagonal element of , i.e., .

 describes the relation between  and :

For observation :

⇨The leverage  quanti�es the in�uence of the observed response  on the
�tted value .

i i H hii

H ŷ y

ŷ = Hy.

i

ŷ i = hi1y1 + hi2y2 + … + + … + hinynhiiyi

hii yi

ŷ i
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Impact of Outliers
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Impact of Outliers

more outliers 
⇨ more impact
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Impact of Outliers
Outliers may not only in�uence the regression coef�cients but also increase the
standard error.
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Identi�cation of Outliers
Outlier: 
Observation for which the observed value is far away from the expected value.

⇨ Idea: Identify outliers using residuals!?
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Identi�cation of Outliers
Outlier: 
Observation for which the observed value is far away from the expected value.

⇨ Idea: Identify outliers using residuals!?

But: Outliers in�uence parameter estimates ⇨ in�uence residuals. 
The regression line is pulled towards the outlier.
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Identi�cation of Outliers
Outlier: 
Observation for which the observed value is far away from the expected value.

⇨ Idea: Identify outliers using residuals!?

But: Outliers in�uence parameter estimates ⇨ in�uence residuals. 
The regression line is pulled towards the outlier.

⇨ Base expected value for observation  on model without .

Studentized Residuals     ("leave-one-out" residuals) 
-distributed with  degrees of freedom if the model is correctly speci�ed

i i

t n − p − 1
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Identi�cation of Outliers
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Identi�cation of Outliers
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Identi�cation of Leverage Values
A large leverage (close to 1) indicates that the observed response  plays a large
role in the value of the predicted response .

⇨ Observation  is driving the model.

Rule of thumb: 
Observations with  should be investigated.

 is equal to the mean over all , i.e., .

yi

ŷ i

i

hii > 2(p + 1)/n

(p + 1)/n hii

n

∑
i=1

hii = (p + 1)/n
1

n
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Identi�cation of Leverage Values
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Identi�cation of Leverage Values
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Identi�cation of Leverage Values
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In�uential Values
In�uential Observation: 
Observation that has excessive in�uence on the model.

Outliers and high leverage points have the potential to be in�uential observations.

Diagnosis of in�uential values:

Cook's Distance
DFEBTAs
DFFITS
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Cook's Distance
Cook's distance measures the difference in the expected responses based on

the model on all observations: , and
the model without observation : :

⇨ Measures difference in all observations jointly.

ŷ
i ŷ(i)

Di =
(ŷ(i) − ŷ)⊤(ŷ(i) − ŷ)

σ̂
2(p + 1)
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Cook's Distance
Cook's distance measures the difference in the expected responses based on

the model on all observations: , and
the model without observation : :

⇨ Measures difference in all observations jointly.

Rule of thumb: 
Observations causing  (or a  standing out from the rest)
are suspicious.

ŷ
i ŷ(i)

Di =
(ŷ(i) − ŷ)⊤(ŷ(i) − ŷ)

σ̂
2(p + 1)

Di > F0.5(p, n − p − 1) Di
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Cook's Distance
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Cook's Distance
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DFFITS
DFFITS is the studentized difference in the �tted values when an observation is
left out:

Rule of thumb: 
Observations with

can be seen as in�uential.

DFFITSi =
ŷ i − ŷ (i)

σ̂(i)√hii

|DFFITS| > 2√ p + 2
n − p − 2
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DFFITS
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DFBETAS
DFBETA is the difference in the regression coef�cient estimates when an
observation is left out:

DFBETAS is a standardized version:

Rule of thumb: 
Observations causing  can be considered in�uential.

DFBETAi = β̂ − β̂(i)

DFBETASi =
β̂ − β̂(i)

σ̂(i)(X⊤X)−1

DFBETAS > 2/√n
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DFBETAS
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What to do with Outliers / In�uential Values?
Should we exclude outliers from the analysis?

Better not, instead

check the raw data for mistakes / typos,
search for explanation for the outlier,
perform sensitivity analyses,
and/or use robust regression (e.g., median regression).
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What to do with Outliers / In�uential Values?
Should we exclude outliers from the analysis?

Better not, instead

check the raw data for mistakes / typos,
search for explanation for the outlier,
perform sensitivity analyses,
and/or use robust regression (e.g., median regression).

Always

make sure the data is correct,
document any changes to the data (e.g., to �x typos) and
use common sense.

If in doubt, perform (and report) sensitivity analyses.
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