Biostatistics I:
Linear Regression

Model Diagnostics IV:
Outliers & Influential Observations

Nicole S. Erler
Department of Biostatistics, Erasmus Medical Center

¥ n.erler@erasmusmc.nl

W QN_Erler

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee


mailto:n.erler@erasmusmc.nl
https://twitter.com/N_Erler

Linear Regression & Assumptions

Linear Regression Model:

yi =x, B+ei, E(g)=0, var(e)=o"

We need to evaluate assumptions about

the error terms: covariates and effects:
e homoscedastic e linear effects (i.e, linear in the parameters)
e uncorrelated e no (Mmulti)collinearity between covariates

e (normally distributed)

and check for outliers and influential observations.



Example: Child Growth

Simple linear model: height. = By + Biage, + &;
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Outliers & Leverage

Simple linear model: height. = By + Biage, + &;
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Outliers & Leverage

An outlier is an observation that "does not fit the model".

A high leverage point is an observation with extreme predictor value(s), for
example with

e an extremely high or low value in a particular covariate, or
e an unusual combination of covariate values.



Leverage Values

The leverage of observation ¢ is the ¢-th diagonal element of H, i.e., h;.

H describes the relation between ¥ and y:

y = Hy.

For observation :

Y, = hjyr + hoyo + ...+ hyy; + .00 4 Rinn

=>The leverage h;; quantifies the influence of the observed response y; on the
fitted value y..



Impact of Outliers
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Impact of Outliers

more outliers
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Impact of Outliers

Outliers may not only influence the regression coefficients but also increase the
standard error.
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Identification of Outliers

Outlier:
Observation for which the observed value is far away from the expected value.

= ldea: Identify outliers using residuals!?
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Identification of Outliers

Outlier:
Observation for which the observed value is far away from the expected value.

= ldea: Identify outliers using residuals!?

But: Outliers influence parameter estimates = influence residuals.
The regression line is pulled towards the outlier.

= Base expected value for observation 1 on model without .

Studentized Residuals ("leave-one-out" residuals)
t-distributed with n — p — 1 degrees of freedom if the model is correctly specified



Identification of Outliers

t-distribution with n-p-1df
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Identification of Outliers

t-distribution with n-p-1df
studentized residuals
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Identification of Leverage Values

A large leverage (close to 1) indicates that the observed response y; plays a large
role in the value of the predicted response ...

= Observation 7 is driving the model.

Rule of thumb:
Observations with h;; > 2(p + 1) /n should be investigated.

1 n
(p —+ 1)/n is equal to the mean over all h;;, ie, E Z hii = (p T 1)/”
1=1
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Identification of Leverage Values
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Identification of Leverage Values




Identification of Leverage Values




Influential Values

Influential Observation:
Observation that has excessive influence on the model.

Outliers and high leverage points have the potential to be influential observations.

Diagnosis of influential values:

e Cook's Distance
e DFEBTAS
e DFFITS

14



Cook's Distance

Cook's distance measures the difference in the expected responses based on

e the model on all observations: ¥, and
» the model without observation i: § ;:

A

(5’(1) - y)T(S’(i) —-y)

D; = 2
5 (p+1)

= Measures difference in all observations jointly.
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Cook's Distance

Cook's distance measures the difference in the expected responses based on

e the model on all observations: ¥, and
» the model without observation i: § ;:

A

(5’(1) - y)T(S’(i) —-y)

D; = 2
5 (p+1)

= Measures difference in all observations jointly.

Rule of thumb:
Observations causing D; > Fy5(p,n — p — 1) (or a D; standing out from the rest)

are suspicious.
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Cook's Distance

Fos(p,n-p-1)
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Cook's Distance

Fos(p,n-p-1)
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DFFITS

DFFITS is the studentized difference in the fitted values when an observation is
left out:

Yi — Y
DFFITS, = ©
G i)V hii
Rule of thumb:
Observations with
2
DFFITS| > 2\/ P
n—p—2

can be seen as influential.
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DFFITS
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DFBETAS

DFBETA is the difference in the regression coefficient estimates when an
observation is left out:

DFBETA,; = 8 — B;
DFBETAS is a standardized version:
B — B
5‘(i)(XTX)_1

DFBETAS,; —

Rule of thumb:
Observations causing DFBETAS > 2/,/n can be considered influential.
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DFBETAS
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What to do with Outliers / Influential Values?

Should we exclude outliers from the analysis?
Better not, instead

check the raw data for mistakes / typos,

search for explanation for the outlier,

perform sensitivity analyses,

and/or use robust regression (e.g., median regression).
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What to do with Outliers / Influential Values?

Should we exclude outliers from the analysis?
Better not, instead

o check the raw data for mistakes / typos,

e search for explanation for the outlier,

e perform sensitivity analyses,

e and/or use robust regression (e.g., median regression).

Always

e make sure the data is correct,
e document any changes to the data (e.g., to fix typos) and
* USe cOommon sense.

If in doubt, perform (and report) sensitivity analyses.
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