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Linear Regression

Requirement for linear models:
The model is linear in the regression coefficients and the error term.

linear model

height

age



Linear Regression

Requirement for linear models:
The model is linear in the regression coefficients and the error term.

linear model non-linear model

height
height

age age



Linearity and Nonlinear Effects

height;, = By + f(B1)age; + &; height;, = By + B1f(age;) + &;

non-linear model linear model

1unit =1year

Tunit <8 years

height
height

1Tunit =1year

Tunit£15 years

age flage)

As long as we can write the model as y; = f(xz-)T,B + ¢; we have a linear model.



Modelling Non-linear Associations

Non-linear associations between response and continuous covariates can be
modelled by transforming the covariate, i.e,,

yi = f(x:) ' B+ &
But:

e The regression coefficient corresponds to a 1 unit change in the transformed
covariate, not to a 1 unit change in the original covariate.

 We cannot represent the effect of the covariate on its original scale by a single
number.



Modelling Non-linear Associations

A transformation of the response also results in a non-linear association between
the original response and the covariates, i.e,,

flyi) =%/ B+e;
But:

« The regression coefficients represent a change in f(y), notiny.

e Only some transformations result in a direct interpretation with regards to a
changeiny (e.g., the log).

e This affects the interpretation of all covariates in the model.



Complex Non-linear Forms
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Complex Non-linear Forms

Transformations of covariates may result in multiple terms.

For example,

yi = f(x;)' B+ e,
could use a function

f(z;) = Brzi + Pox]
or even

f(z;) = Brw; + Bax? + Bsx + Bax} + Bsx)+. ..



Complex Non-linear Forms: Polynomials

Polynomials are very flexible:
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Complex Non-linear Forms: Polynomials

Polynomials are very flexible:
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Complex Non-linear Forms: Polynomials

Polynomials are very flexible:
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Complex Non-linear Forms: Polynomials

Polynomials are very flexible:
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Complex Non-linear Forms: Polynomials

Problem:
Polynomial terms of the same variable are often highly correlated.

= Multicollinearity!

Variance Inflation Factor:
time

model
ime? Corﬁgolation term quadratic cubic quartic quintic
- time 16 112 470 1656
time” s time2 16 690 8692 69807
. 025 time3 278 18441 412699
0.00 ti me4 4127 447096
time” time® 62893

time time? time> time” time®



Orthogonal Polynomials

In @
Instead of

Im(nr proc ~ time + I(time”2) + I(time”3) + I(time”r4), data = example data)

we Can use
Im(nr _proc ~ poly(time, degree = 4), data = example data)

to fit orthogonal polynomials.



Orthogonal Polynomials

In @
Instead of

Im(nr proc ~ time + I(time”2) + I(time”3) + I(time”r4), data = example data)

we Can use
Im(nr _proc ~ poly(time, degree = 4), data = example data)

to fit orthogonal polynomials.

Variance Inflation Factor:

VIF
poly(time, degree = 41
poly

poly
poly(time, degree = 4)4

time, degree = 4)2

L I B |

( )
( )
(time, degree = 4)3
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Orthogonal Polynomials

Remember:

Orthogonal polynomials do not have the same values as standard polynomials (but
contain the same information).

= The design matrices differ.

Orthogonal: Standard:
& p . .
(Intercept) 4.31 (Intercept) 3.82 =The reg IteSSIO.n coefficients
poly(time, degree = 4)1 697 time 0.87 are not identical, but the

poly

time, degree = 4

(
(

poly(time, degree = 4)3 -3.50
(

)
)2 7.65
)
)

poly(time, degree = 4)4 -6.39

l(timen2) -0.29
[(timen3) 0.03
l(timen4) 0.00

fitted values are.
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Orthogonal Polynomials

— time + I(timeA2) + |(timeA3) + |(timenr4) poly(time, degree = 4)
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Polynomials

Drawback: Polynomials are defined over the whole range of the covariate.
= Local changes have global impact.

poly(time, degree = 4)
without extra data

poly(time, degree = 4)
with extra data

number of procedures

time (years)
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Splines

response, y

covariate, x
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B-Splines

response, y

covariate, x
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B-Splines

response, y

Ks
covariate, X
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B-Splines

Splines fit into the framework of linear models:

= Bo+ f(z:)' B +e

= fo + B1Bi(z:) + B2 Ba(xi) + B3 Bs(@i) + - ..

J/

~~

f(i’?i)T,B

M&

) + €

flz:)'B

+ &;
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B-Splines

response, y

d
Yi = Bo + Zﬂr B,.(z;) + &
r=1

covariate, x
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B-Splines

response, y

covariate, x
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B-Splines

)

response, y

d
Yi = 50 + Z ﬁrBr(wz) + &;
r=1

N,

covariate, x

(
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B-Splines

A B-Spline is a linear combination of a set of basis functions.
These basis functions are defined so that they are

e polynomial functions inside a given interval, and
e zero outside that interval,
e and connected so that form a (smooth) line.

The intervals are defined by a set of knots.

The polynomial function have a certain degree (i.e., constant, linear, quadratic, .. .)

20



B-Splines in ®

The package splines provides the functions

e bs(): B-splines
e ns(): natural cubic (B-)splines

21



B-Splines in ®

The package splines provides the functions

e bs(): B-splines
e ns(): natural cubic (B-)splines

Arguments

e x:the (name of the) covariate

df:. the number of degrees of freedom

degree: degree of the polynomial (only for bs())
knots: position of the inner knots
Boundary.knots: position of the boundary knots

21



B-Splines in ®

For example:
Im(height ~ ns(age, df = 3) + sex + kcal sd, data = child)

##

## Call:

## 1lm(formula = height ~ ns(age, df = 3) + sex + kcal sd, data = child)
#H#

## Coefficients:

H#H# (Intercept) mns(age, df = 3)1 ns(age, df = 3)2 ns(age, df = 3)3
## 0.269137 0.554308 1.037329 0.467639
## sexgirl kcal sd
#H# 0.007267 0.000595

Regression coefficients associated with the spline do not have a clinically
meaningful interpretation.
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B-Splines: Degree

constant: degree O

linear: degree 1

quadratic: degree 2

B-spline basis function

cubic: degree 3
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B-Splines: Degree

response, y

constant: degree O linear: degree 1

= N

quadratic: degree 2 cubic: degree 3

covariate, x
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Splines: Knots & Degrees of Freedom

B-splines are defined based on two boundary knots and a set of inner knots.
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Splines: Knots & Degrees of Freedom

B-splines are defined based on two boundary knots and a set of inner knots.

(Cubic) B-splines and natural cubic splines differ in how they are defined
at/outside the boundary knots.
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Splines: Knots & Degrees of Freedom

B-splines are defined based on two boundary knots and a set of inner knots.

(Cubic) B-splines and natural cubic splines differ in how they are defined
at/outside the boundary knots.

The degrees of freedom (df; number of associated regression coefficients) depend
on the degree of the spline and number of inner knots:

e B-splines: df = # inner knots + degree, (i.e., df > degree)
e natural cubic splines: df = # inner knots + 1, (i.e,, df > 1)

= The number of (inner) knots / degrees of freedom control the flexibility.
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Knots/df with bs()

bs(x, df = 3)

response, y

§

boundary knots

bs(x, df = 8)

covariate, x

inner knots

oo

bs(x, df = 25)

J

R R RN
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Knots/df with ns()

boundary knots inner knots

ns(x, df = 3) ns(x, df = 8) ns(x, df = 25)

response, y

0

SISO

o CESSISISESX

covariate, x



Boundary Knots

bs(x, df = 5)

|

ns(x, df = 5)

response, y

R ———

O

bs(x, df = 5, Boundary.knots = ¢(0, 10))

-\ ~—

ns(x, df = 5, Boundary.knots = ¢(0, 10))

covariate, x
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Boundary Knots for Skewed Data/Outliers

ns(x, df = 4) ns(x, df = 4, B = quantile(x, c(0.05, 1)))

number of procedures

5% 100%
time (years)
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Placement of Knots

bs(x, df = 5)
I

response, y

bs(x, df = 5, knots = ¢(2, 4))

ns(x, df = 5, knots = 2:5)
111
111
N
[
[

. | 4°S°F
e ——— @%4:&

2345
covariate, x
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Summary

Non-linear effects can be included in the linear model in multiple ways, for
example using transformations, polynomials or (B-)splines.

Transformations

e requires a known, simple structure
e interpretation with regards to 1 unit change in f(x)

Polynomials

« more flexible than (simple) transformations

e flexibility controlled by degree of polynomial

e coefficients of the separate terms need to be interpreted jointly
= usually too complex for direct interpretation
= effect plots
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Summary

(B-)Splines

e more flexible than (simple) transformations
specified locally = more stable than polynomials
most common: natural cubic (B-)splines

no direct interpretation of the coefficients

= effect plots

flexibility controlled via degrees of freedom
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