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Linear Regression

Requirement for linear models:
The model is linear in the regression coef�cients and the error term.
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Linearity and Nonlinear Effects

As long as we can write the model as  we have a linear model.

heighti = β0 + f(β1)agei + εi heighti = β0 + β1f(agei) + εi

yi = f(xi)
⊤β + εi
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Modelling Non-linear Associations

Non-linear associations between response and continuous covariates can be

modelled by transforming the covariate, i.e.,

But:

The regression coef�cient corresponds to a 1 unit change in the transformed
covariate, not to a 1 unit change in the original covariate.

We cannot represent the effect of the covariate on its original scale by a single

number.

yi = f(xi)
⊤β + εi
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Modelling Non-linear Associations

A transformation of the response also results in a non-linear association between

the original response and the covariates, i.e.,

But:

The regression coef�cients represent a change in , not in .

Only some transformations result in a direct interpretation with regards to a

change in  (e.g., the ).

This affects the interpretation of all covariates in the model.

f(yi) = x⊤
i

β + εi

f(y) y

y log
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Complex Non-linear Forms
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Complex Non-linear Forms

Transformations of covariates may result in multiple terms.

For example,

could use a function

or even

yi = f(xi)
⊤β + εi,

f(xi) = β1xi + β2x2
i

f(xi) = β1xi + β2x2
i

+ β3x3
i

+ β4x4
i

+ β5x5
i
+. . .

6



Complex Non-linear Forms: Polynomials

Polynomials are very �exible:
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Variance In�ation Factor:

model

term quadratic cubic quartic quintic

time 16 112 470 1656

time
2 16 690 8692 69807

time
3 278 18441 412699

time
4 4127 447096

time
5 62893

Complex Non-linear Forms: Polynomials

Problem:
Polynomial terms of the same variable are often highly correlated.

⇨ Multicollinearity!

8



Orthogonal Polynomials

In :

Instead of

lm(nr_proc ~ time + I(time^2) + I(time^3) + I(time^4), data = example_data)

we can use

lm(nr_proc ~ poly(time, degree = 4), data = example_data)

to �t orthogonal polynomials.
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Orthogonal Polynomials

In :

Instead of

lm(nr_proc ~ time + I(time^2) + I(time^3) + I(time^4), data = example_data)

we can use

lm(nr_proc ~ poly(time, degree = 4), data = example_data)

to �t orthogonal polynomials.

Variance In�ation Factor:

VIF

poly(time, degree = 4)1 1

poly(time, degree = 4)2 1

poly(time, degree = 4)3 1

poly(time, degree = 4)4 1
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Orthogonal Polynomials

Remember:

Orthogonal polynomials do not have the same values as standard polynomials (but

contain the same information).

⇨ The design matrices differ.

Orthogonal:

(Intercept) 4.31

poly(time, degree = 4)1 6.97

poly(time, degree = 4)2 7.65

poly(time, degree = 4)3 -3.50

poly(time, degree = 4)4 -6.39

Standard:

(Intercept) 3.82

time 0.87

I(time^2) -0.29

I(time^3) 0.03

I(time^4) 0.00

⇨The regression coef�cients

are not identical, but the

�tted values are.

β β

10



Orthogonal Polynomials
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Polynomials

Drawback: Polynomials are de�ned over the whole range of the covariate.

⇨ Local changes have global impact.
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Splines
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B-Splines
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B-Splines

Splines �t into the framework of linear models:

yi = β0 + f(xi)
⊤β + εi

= β0 + β1B1(xi) + β2B2(xi) + β3B3(xi) + …


f(xi)
⊤β

+ εi

= β0 +
d

∑
r=1

βrBr(xi)



f(xi)
⊤β

+ εi
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B-Splines

yi = β0 +
d

∑
r=1

βr + εiBr(xi)
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B-Splines

yi = β0 +
d

∑
r=1

Br(xi) + εiβr
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B-Splines

yi = β0 + βrBr(xi) + εi

d

∑
r=1

19



B-Splines

A B-Spline is a linear combination of a set of basis functions.

These basis functions are de�ned so that they are

polynomial functions inside a given interval, and

zero outside that interval,

and connected so that form a (smooth) line.

The intervals are de�ned by a set of knots.

The polynomial function have a certain degree (i.e., constant, linear, quadratic, . . . )
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B-Splines in 

The package splines provides the functions

bs(): B-splines

ns(): natural cubic (B-)splines
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B-Splines in 

The package splines provides the functions

bs(): B-splines

ns(): natural cubic (B-)splines

Arguments

x: the (name of the) covariate

df: the number of degrees of freedom

degree: degree of the polynomial (only for bs())

knots: position of the inner knots

Boundary.knots: position of the boundary knots
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B-Splines in 

For example:

lm(height ~ ns(age, df = 3) + sex + kcal_sd, data = child)

## 
## Call:
## lm(formula = height ~ ns(age, df = 3) + sex + kcal_sd, data = child)
## 
## Coefficients:
##      (Intercept)  ns(age, df = 3)1  ns(age, df = 3)2  ns(age, df = 3)3  
##         0.269137          0.554308          1.037329          0.467639  
##          sexgirl           kcal_sd  
##         0.007267          0.000595

Regression coef�cients associated with the spline do not have a clinically

meaningful interpretation.
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B-Splines: Degree
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B-Splines: Degree
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Splines: Knots & Degrees of Freedom

B-splines are de�ned based on two boundary knots and a set of inner knots.
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(Cubic) B-splines and natural cubic splines differ in how they are de�ned
at/outside the boundary knots.
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Splines: Knots & Degrees of Freedom

B-splines are de�ned based on two boundary knots and a set of inner knots.

(Cubic) B-splines and natural cubic splines differ in how they are de�ned
at/outside the boundary knots.

The degrees of freedom (df; number of associated regression coef�cients) depend
on the degree of the spline and number of inner knots:

B-splines: df = # inner knots + degree, (i.e., df  degree)
natural cubic splines: df = # inner knots + 1, (i.e., df  1)

⇨ The number of (inner) knots / degrees of freedom control the �exibility.

≥

≥
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Knots/df with bs()
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Knots/df with ns()
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Boundary Knots
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Boundary Knots for Skewed Data/Outliers
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Placement of Knots
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Summary

Non-linear effects can be included in the linear model in multiple ways, for

example using transformations, polynomials or (B-)splines.

Transformations

requires a known, simple structure

interpretation with regards to 1 unit change in 

Polynomials

more �exible than (simple) transformations

�exibility controlled by degree of polynomial

coef�cients of the separate terms need to be interpreted jointly

⇨ usually too complex for direct interpretation

⇨ effect plots

f(x)
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Summary

(B-)Splines

more �exible than (simple) transformations

speci�ed locally ⇨ more stable than polynomials

most common: natural cubic (B-)splines

no direct interpretation of the coef�cients

⇨ effect plots

�exibility controlled via degrees of freedom
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