Biostatistics I: Linear Regression

Non-linear Effects

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

n.erler@erasmusmc.nl

♥ @N_Erler

Linear Regression

Requirement for linear models:

The model is linear in the regression coefficients and the error term.

linear model

Linear Regression

Requirement for linear models:

The model is linear in the regression coefficients and the error term.

linear model

age

age

Linearity and Nonlinear Effects

$$\mathrm{height}_i = eta_0 + f(eta_1) \mathrm{age}_i + arepsilon_i$$

 $\mathrm{height}_i = eta_0 + eta_1 f(\mathrm{age}_i) + arepsilon_i$

As long as we can write the model as $y_i = f(\mathbf{x}_i)^ op oldsymbol{eta} + arepsilon_i$ we have a linear model.

Modelling Non-linear Associations

Non-linear associations between response and continuous covariates can be modelled by **transforming the covariate**, i.e.,

$$y_i = f(\mathbf{x}_i)^ op oldsymbol{eta} + arepsilon_i$$

But:

- The regression coefficient corresponds to a **1 unit change in the transformed covariate**, not to a 1 unit change in the original covariate.
- We cannot represent the effect of the covariate on its original scale by a single number.

Modelling Non-linear Associations

A transformation of the response also results in a non-linear association between the original response and the covariates, i.e.,

$$f(y_i) = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i$$

But:

- The regression coefficients represent a **change in** $f(\mathbf{y})$, not in \mathbf{y} .
- Only some transformations result in a direct interpretation with regards to a change in ${f y}$ (e.g., the log).
- This **affects** the interpretation of **all covariates** in the model.

Complex Non-linear Forms

time (years)

Complex Non-linear Forms

Transformations of covariates may result in multiple terms.

For example,

$$y_i = f(\mathbf{x}_i)^ op oldsymbol{eta} + arepsilon_i,$$

could use a function

$$f(x_i)=eta_1x_i+eta_2x_i^2$$

or even

$$f(x_i) = eta_1 x_i + eta_2 x_i^2 + eta_3 x_i^3 + eta_4 x_i^4 + eta_5 x_i^5 + \dots$$

Polynomials are very flexible:

time (years)

Polynomials are very flexible:

Polynomials are very flexible:

time (years)

Polynomials are very flexible:

Problem:

Polynomial terms of the same variable are often highly correlated.

⇒ Multicollinearity!

time -	1.00	0.97	0.92	0.88	0.84
time ^{2_}	0.97	1.00	0.99	0.96	0.94
time ^{3_}	0.92	0.99	1.00	0.99	0.98
time ^{4_}	0.88	0.96	0.99	1.00	1.00
time ^{5_}	0.84	0.94	0.98	1.00	1.00
time time ² time ³ time ⁴ time ⁵					

со	rrelation
	0.75
	0.50
	0.25
	0.00

Variance Inflation Factor:

	model					
term	quadratic	cubic	quartic	quintic		
time	16	112	470	1656		
time ²	16	690	8692	69807		
time ³		278	18441	412699		
time ⁴			4127	447096		
time ⁵				62893		

```
In @:
Instead of
```

```
lm(nr_proc ~ time + I(time^2) + I(time^3) + I(time^4), data = example_data)
```

we can use

```
lm(nr_proc ~ poly(time, degree = 4), data = example_data)
```

to fit orthogonal polynomials.

```
In @:
Instead of
```

```
lm(nr_proc ~ time + I(time^2) + I(time^3) + I(time^4), data = example_data)
```

we can use

```
lm(nr_proc ~ poly(time, degree = 4), data = example_data)
```

to fit orthogonal polynomials.

Variance Inflation Factor:

VIF

1

٦

poly(time, degree = 4)1 1

poly(time, degree = 4)2 1

- poly(time, degree = 4)3
- poly(time, degree = 4)4

Remember:

Orthogonal polynomials do not have the same values as standard polynomials (but contain the same information). ⇒ The design matrices differ.

Orthogonal:

Standard:

	eta	
(Intercept)	4.31	
poly(time, degree = 4)1	6.97	
poly(time, degree = 4)2	7.65	
poly(time, degree = 4)3	-3.50	
poly(time, degree = 4)4	-6.39	

	eta
(Intercept)	3.82
time	0.87
I(time^2)	-0.29
l(time^3)	0.03
l(time^4)	0.00

⇒The regression coefficients are not identical, but the fitted values are.

---- time + I(time^2) + I(time^3) + I(time^4) - - poly(time, degree = 4)

time (years)

11

Polynomials

Drawback: Polynomials are defined over the whole range of the covariate. ⇒ Local changes have global impact.

Splines

Splines fit into the framework of linear models:

$$egin{aligned} y_i &= eta_0 + f(x_i)^ op eta + arepsilon_i \ &= eta_0 + \underbrace{eta_1 B_1(x_i) + eta_2 B_2(x_i) + eta_3 B_3(x_i) + \dots}_{f(x_i)^ op eta} + arepsilon_i \ &= eta_0 + \underbrace{\sum_{r=1}^d eta_r B_r(x_i) + arepsilon_i}_{f(x_i)^ op eta} \end{aligned}$$

 $y_i = eta_0 + \sum_{r=1}^d eta_r \, B_r(x_i) \, + arepsilon_i$

covariate, x

 $y_i = eta_0 + \sum_{r=1}^d eta_r B_r(x_i) + arepsilon_i$

covariate, x

$$y_i = eta_0 + \sum_{r=1}^d eta_r B_r(x_i) + arepsilon_i$$

A **B-Spline** is a linear combination of a set of **basis functions**.

These **basis functions** are defined so that they are

- polynomial functions inside a given interval, and
- zero outside that interval,
- and connected so that form a (smooth) line.

The intervals are defined by a set of **knots**.

The polynomial function have a certain **degree** (i.e., constant, linear, quadratic, ...)

B-Splines in

The package **splines** provides the functions

- bs(): B-splines
- ns(): natural cubic (B-)splines

B-Splines in

The package **splines** provides the functions

- bs(): B-splines
- ns(): natural cubic (B-)splines

Arguments

- x: the (name of the) covariate
- df: the number of degrees of freedom
- degree: degree of the polynomial (only for bs())
- knots: position of the inner knots
- Boundary.knots: position of the boundary knots

B-Splines in

For example:

```
lm(height ~ ns(age, df = 3) + sex + kcal_sd, data = child)
```

```
##
## Call:
## lm(formula = height ~ ns(age, df = 3) + sex + kcal sd, data = child)
##
## Coefficients:
        (Intercept) ns(age, df = 3)1 ns(age, df = 3)2 ns(age, df = 3)3
##
          0.269137
                            0.554308
                                               1.037329
                                                                0.467639
##
           sexqirl
                            kcal sd
##
          0.007267
                            0.000595
##
```

Regression coefficients associated with the spline do not have a clinically meaningful interpretation.

B-Splines: Degree

B-Splines: Degree

covariate, x

Splines: Knots & Degrees of Freedom

B-splines are defined based on two **boundary knots** and a set of **inner knots**.

Splines: Knots & Degrees of Freedom

B-splines are defined based on two **boundary knots** and a set of **inner knots**.

(Cubic) **B-splines** and **natural cubic splines** differ in how they are defined at/outside the boundary knots.

Splines: Knots & Degrees of Freedom

B-splines are defined based on two **boundary knots** and a set of **inner knots**.

(Cubic) **B-splines** and **natural cubic splines** differ in how they are defined at/outside the boundary knots.

The **degrees of freedom** (df; number of associated regression coefficients) depend on the degree of the spline and number of inner knots:

- **B-splines**: df = # inner knots + degree, (i.e., df \ge degree)
- **natural cubic splines**: df = # inner knots + 1, (i.e., df \ge 1)

⇒ The number of (inner) knots / degrees of freedom control the flexibility.

covariate, x

covariate, x

Boundary Knots

Boundary Knots for Skewed Data/Outliers

Placement of Knots

Summary

Non-linear effects can be included in the linear model in multiple ways, for example using **transformations**, **polynomials** or **(B-)splines**.

Transformations

- requires a known, simple structure
- interpretation with regards to 1 unit change in f(x)

Polynomials

- more flexible than (simple) transformations
- flexibility controlled by degree of polynomial
- coefficients of the separate terms need to be interpreted jointly
 ⇒ usually too complex for direct interpretation
 ⇒ effect plots

Summary

(B-)**Splines**

- more flexible than (simple) transformations
- specified locally ⇒ more stable than polynomials
- most common: natural cubic (B-)splines
- no direct interpretation of the coefficients
 ⇒ effect plots
- flexibility controlled via degrees of freedom