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The Multiple Linear Regression Model
Basic assumptions:

single continuous response variable
multiple covariates of mixed type (continuous or categorical)
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The Multiple Linear Regression Model
Basic assumptions:

single continuous response variable
multiple covariates of mixed type (continuous or categorical)

The model is then formally written as:

yi = β0 + β1xi1 + β2xi2 + … + βpxip


additive linear systematic component
(linear predictor)

+ εi

error
terms

E(εi) = 0, var(εi) = σ2, i = 1, … , n
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The Multiple Linear Regression Model
Basic assumptions:

single continuous response variable
multiple covariates of mixed type (continuous or categorical)

The model is then formally written as:

 

Extension of simple linear regression to multiple covariates.
Note: Both are univariate models!

yi = β0 + β1xi1 + β2xi2 + … + βpxip


additive linear systematic component
(linear predictor)

+ εi

error
terms

E(εi) = 0, var(εi) = σ2, i = 1, … , n

1



What Makes the Linear Model Linear?
A linear regression model is linear in the regression coef�cients and the error
term.

Linear Not linear

y = β0 + β1x1 + β2x2 + ε

y = β0 + β1x2
1 + β2 log(x2) + ε

log(y) = β0 + β1x1 + β2x2 + ε

y = β0 + exp(β1x1 + β2x2) + ε

y = β0 + β1x1/(β2x2) + ε

y = β0 + β1x
β2

1 + ε
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Example: Child Growth
Our data might look like this: 

height age sex race

112 6.53 boy caucasian

108 4.76 girl caucasian

117 6.33 boy asian

114 5.34 boy other

100 2.95 girl caucasian

How would our regression model look like,
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Example: Child Growth
Our data might look like this: 

height age sex race

112 6.53 boy caucasian

108 4.76 girl caucasian

117 6.33 boy asian

114 5.34 boy other

100 2.95 girl caucasian

How would our regression model look like,

heighti = β0 + β1agei + β2sexi + β3racei + εi?
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Coef�cients of Continuous Covariates
In the model

 describes the change in the expected height when age is increased by one
unit and all other covariates are held constant.

heighti = β0 + β1agei + β2sexi + β3racei + εi

β1
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Coef�cients of Continuous Covariates
In the model

 describes the change in the expected height when age is increased by one
unit and all other covariates are held constant.

heighti = β0 + β1agei + β2sexi + β3racei + εi

β1

heightage = β0 + + β2sex + β3race

heightage+1 = β0 + + β2sex + β3race

β1age

β1(age + 1)
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Coef�cients of Continuous Covariates
In the model

 describes the change in the expected height when age is increased by one
unit and all other covariates are held constant.

heighti = β0 + β1agei + β2sexi + β3racei + εi

β1

heightage = β0 + + β2sex + β3race

heightage+1 = β0 + + β2sex + β3race

β1age

β1(age + 1)

heightage+1 − heightage = β1(age + 1) − β1age = β1

4



Categories as Numeric Values

We could use the following coding:

sex: 
"boy" = 0, "girl" = 1
race: 
"caucasian" = 0, "asian" = 1, "other" = 2

height age sex race

112 6.53 0 0

108 4.76 1 0

117 6.33 0 1

114 5.34 0 2

100 2.95 1 0
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Categories as Numeric Values

We could use the following coding:

sex: 
"boy" = 0, "girl" = 1
race: 
"caucasian" = 0, "asian" = 1, "other" = 2

height age sex race

112 6.53 0 0

108 4.76 1 0

117 6.33 0 1

114 5.34 0 2

100 2.95 1 0

This results in the linear predictors:

boy (sex = 0): β0 + β1age + β3race

girl (sex = 1): β0 + β1age + + β3raceβ2
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Categories as Numeric Values
What would this look like for the effect of race?

caucasian (race = 0): β0 + β1age + β2sex

asian (race = 1): β0 + β1age + β2sex +

other (race = 2): β0 + β1age + β2sex +

β3

2β3
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Categories as Numeric Values
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Categories as Numeric Values
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Categories as Numeric Values
To avoid the link between effects of different categories we need additional
parameters.

In general: One parameter less than the number of categories.
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Categories as Numeric Values
To avoid the link between effects of different categories we need additional
parameters.

In general: One parameter less than the number of categories.

Most common coding choices:

Dummy coding

race(asian)  race(other)

caucasian 0 0

asian 1 0

other 0 1

Effect coding

race(1)  race(2)

caucasian 1 0

asian 0 1

other -1 -1
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Dummy Coding
Using dummy coding, the model is:

This leads to the following linear predictors:

heighti = β0 + β1agei + β2sexi + + + εiβ3race
(asian)
i

β4race
(other)
i

caucasian: β0 + β1age + β2sex + β30 + β40 = β0 + β1age + β2sex

asian: β0 + β1age + β2sex + β31 + β40 = β0 + β1age + β2sex +

other: β0 + β1age + β2sex + β30 + β41 = β0 + β1age + β2sex +

β3

β4
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Dummy Coding
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Effect Coding
Using effect coding, the model is:

Effect coding will lead to the following linear predictors:

 

heighti = β0 + β1agei + β2sexi + + + εiβ3race
(1)
i

β4race
(2)
i

caucasian: β0 + β1age + β2sex + β31 + β40 =β0 + β1age + β2sex

asian: β0 + β1age + β2sex + β30 + β41 =β0 + β1age + β2sex

other: β0 + β1age + β2sex + β3(−1) + β4(−1)=β0 + β1age + β2sex

+ β3

+ β4

− β3 − β4
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Effect Coding
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Interpretation of the Intercept
Dummy coding:

In dummy coding, the intercept  is the expected outcome when all covariate
values are zero, i.e., for a caucasian (race(asian) = race(other) = 0) boy (sex = 0) with
zero years of age.

β0 + β1age + β2sex + β3race
(asian)
i

+ β4race
(other)
i

β0
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Interpretation of the Intercept
Dummy coding:

In dummy coding, the intercept  is the expected outcome when all covariate
values are zero, i.e., for a caucasian (race(asian) = race(other) = 0) boy (sex = 0) with
zero years of age.

Effect coding:

With effect coding there is no scenario where all effects are zero.

β0 + β1age + β2sex + β3race
(asian)
i

+ β4race
(other)
i

β0

β0 + β1age + β2sex + β3race(1) + β4race(2)
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Interpretation of the Intercept
In effect coding the intercept represents the average expected response over all
categories (when all other covariates are zero).

heightcauc. = β0 + β3

heightasian = β0 + β4

heightother = β0 − β3 − β4
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Interpretation of the Intercept
In effect coding the intercept represents the average expected response over all
categories (when all other covariates are zero).

heightcauc. = β0 + β3

heightasian = β0 + β4

heightother = β0 − β3 − β4

=

= = β0

heightcauc. + heightasian + heightother

3

β0 + β3 + β0 + β4 + β0 − β3 − β4

3
3β0

3
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Multiple Linear Regression in Matrix Notation
The basic model of multiple linear regression in matrix notation is

y = Xβ + ε, E(ε) = 0, var(ε) = σ
2I I =

⎛
⎜ ⎜ ⎜ ⎜ ⎜
⎝

1 0 … 0
0 1 … 0

⋮ ⋱ ⋮
0 0 … 1

⎞
⎟ ⎟ ⎟ ⎟ ⎟
⎠
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Multiple Linear Regression in Matrix Notation
The basic model of multiple linear regression in matrix notation is

y = Xβ + ε, E(ε) = 0, var(ε) = σ2I I =

⎛
⎜ ⎜ ⎜ ⎜ ⎜
⎝

1 0 … 0
0 1 … 0

⋮ ⋱ ⋮
0 0 … 1

⎞
⎟ ⎟ ⎟ ⎟ ⎟
⎠

⎛
⎜ ⎜
⎝

y1

⋮
yn

⎞
⎟ ⎟
⎠

=
⎛
⎜ ⎜
⎝

1 x11 … x1p

⋮ ⋮ ⋮
1 xn1 … xnp

⎞
⎟ ⎟
⎠

⎛
⎜ ⎜
⎝

β0

⋮
βp

⎞
⎟ ⎟
⎠

+
⎛
⎜ ⎜
⎝

ε1

⋮
εn

⎞
⎟ ⎟
⎠
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Sidenote: Tansposing Vectors and Matrices

y =
⎛
⎜ ⎜
⎝

y1

⋮
yn

⎞
⎟ ⎟
⎠

⇒ y
⊤ = (y1, … , yn)

17



Sidenote: Tansposing Vectors and Matrices

y =
⎛
⎜ ⎜
⎝

y1

⋮
yn

⎞
⎟ ⎟
⎠

⇒ y⊤ = (y1, … , yn)

X =
⎛
⎜ ⎜
⎝

1 x11 … x1p

⋮ ⋮ ⋮
1 xn1 … xnp

⎞
⎟ ⎟
⎠

⇒ X
⊤ =

⎛
⎜ ⎜ ⎜ ⎜
⎝

1 … 1
x11 … xn1

⋮ ⋮
x1p … xnp

⎞
⎟ ⎟ ⎟ ⎟
⎠
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Estimation via OLS
Ordinary Least Squares (OLS) Estimator

n

∑
i=1

(yi − x
⊤
i

β


ε̂ i

)2
⟶ min

β
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Estimation via OLS
Ordinary Least Squares (OLS) Estimator

The least squares principle in matrix notation

n

∑
i=1

(yi − x⊤
i

β


ε̂ i

)2
⟶ min

β

(y − Xβ)⊤(y − Xβ)⟶ min
β
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