Biostatistics I: Linear Regression

Multiple Linear Regression

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

∑n.erler@erasmusmc.nl

♥ @N_Erler

The Multiple Linear Regression Model

Basic assumptions:

- **single** continuous **response** variable
- **multiple covariates** of mixed type (continuous or categorical)

The Multiple Linear Regression Model

Basic assumptions:

- **single** continuous **response** variable
- **multiple covariates** of mixed type (continuous or categorical)

The model is then formally written as:

The Multiple Linear Regression Model

Basic assumptions:

- **single** continuous **response** variable
- **multiple covariates** of mixed type (continuous or categorical)

The model is then formally written as:

$$egin{aligned} y_i &= egin{aligned} η_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_p x_{ip} \ η_i η_i \ η_i$$

- Extension of simple linear regression to multiple covariates.
- Note: Both are **univariate** models!

What Makes the Linear Model Linear?

A **linear** regression model is **linear in the regression coefficients** and the error term.

Linear

- $\mathbf{y} = eta_0 + eta_1 \mathbf{x}_1 + eta_2 \mathbf{x}_2 + oldsymbol{arepsilon}$
- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1^2 + \beta_2 \log(\mathbf{x}_2) + \boldsymbol{\varepsilon}$
- $\bullet \ \log(\mathbf{y}) = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \boldsymbol{\varepsilon}$

Not linear

• $\mathbf{y} = eta_0 + \exp(eta_1\mathbf{x}_1 + eta_2\mathbf{x}_2) + oldsymbol{arepsilon}$ • $\mathbf{y} = eta_0 + eta_1\mathbf{x}_1/(eta_2\mathbf{x}_2) + oldsymbol{arepsilon}$

•
$$\mathbf{y}=eta_0+eta_1\mathbf{x}_1^{eta_2}+oldsymbol{arepsilon}$$

Example: Child Growth

Our data might look like this:

height	age	sex	race
112	6.53	boy	caucasian
108	4.76	girl	caucasian
117	6.33	boy	asian
114	5.34	boy	other
100	2.95	girl	caucasian

How would our regression model look like,

Example: Child Growth

Our data might look like this:

height	age	sex	race
112	6.53	boy	caucasian
108	4.76	girl	caucasian
117	6.33	boy	asian
114	5.34	boy	other
100	2.95	girl	caucasian

How would our regression model look like,

$$\text{height}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{sex}_i + \beta_3 \text{race}_i + \varepsilon_i?$$

Coefficients of Continuous Covariates

In the model

$$\operatorname{height}_{i} = \beta_{0} + \beta_{1}\operatorname{age}_{i} + \beta_{2}\operatorname{sex}_{i} + \beta_{3}\operatorname{race}_{i} + \varepsilon_{i}$$

 β_1 describes the change in the expected height when **age is increased by one unit** and all **other covariates are held constant**.

Coefficients of Continuous Covariates

In the model

$$\mathrm{height}_i = eta_0 + eta_1 \mathrm{age}_i + eta_2 \mathrm{sex}_i + eta_3 \mathrm{race}_i + arepsilon_i$$

 β_1 describes the change in the expected height when **age is increased by one unit** and all **other covariates are held constant**.

$$ext{height}_{age} = eta_0 + \ eta_1 ext{age} + eta_2 ext{sex} + eta_3 ext{race}$$

 $ext{height}_{age+1} = eta_0 + \ eta_1(ext{age} + 1) + eta_2 ext{sex} + eta_3 ext{race}$

Coefficients of Continuous Covariates

In the model

$$\mathrm{height}_i = eta_0 + eta_1 \mathrm{age}_i + eta_2 \mathrm{sex}_i + eta_3 \mathrm{race}_i + arepsilon_i$$

 β_1 describes the change in the expected height when age is increased by one unit and all other covariates are held constant.

$$egin{aligned} \operatorname{height}_{age} &= eta_0 + \ eta_1 \mathrm{age} \ + eta_2 \mathrm{sex} + eta_3 \mathrm{race} \ && \operatorname{height}_{age+1} = eta_0 + \ eta_1 (\mathrm{age} + 1) \ + eta_2 \mathrm{sex} + eta_3 \mathrm{race} \end{aligned}$$
 $eta_1 \mathrm{height}_{age+1} - \operatorname{height}_{age} &= eta_1 (\mathrm{age} + 1) - eta_1 \mathrm{age} \ &= \ eta_1 \end{aligned}$

	height	age	sex	race	
We could use the following coding:	112	6.53	0	0	
• Sex:	108	4.76	1	0	
"boy" = 0, "girl" = 1	117	6.33	0	1	
• race:	114	5.34	0	2	
"caucasian" = 0, "asian" = 1, "other" = 2	100	2.95	1	0	

	height	age	sex	race
We could use the following coding:	112	6.53	0	0
• Sex:	108	4.76	1	0
"boy" = 0, "girl" = 1	117	6.33	0	1
• race:	114	5.34	0	2
"caucasian" = 0, "asian" = 1, "other" = 2	100	2.95	1	0

This results in the linear predictors:

boy (sex = 0):
$$\beta_0 + \beta_1$$
age + β_3 race
girl (sex = 1): $\beta_0 + \beta_1$ age + $\beta_2 + \beta_3$ race

What would this look like for the **effect of race**?

 $\begin{array}{ll} ext{caucasian (race = 0):} & \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} \\ ext{asian (race = 1):} & \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} + & \beta_3 \\ ext{other (race = 2):} & \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} + & 2\beta_3 \end{array}$

To **avoid the link** between effects of different categories we need **additional parameters**.

In general: One parameter less than the number of categories.

To **avoid the link** between effects of different categories we need **additional parameters**.

In general: One parameter less than the number of categories.

Most common coding choices:

Dummy coding

	race ^(asian)	race ^(other)
caucasian	0	О
asian	1	О
other	Ο	1

Effect coding

	race ⁽¹⁾	race ⁽²⁾
caucasian	1	0
asian	0	1
other	-1	-1

Dummy Coding

Using **dummy coding**, the model is:

$$\mathrm{height}_i = \beta_0 + \beta_1 \mathrm{age}_i + \beta_2 \mathrm{sex}_i + \ \beta_3 \mathrm{race}_i^{(asian)} + \ \beta_4 \mathrm{race}_i^{(other)} + \varepsilon_i$$

This leads to the following linear predictors:

Dummy Coding

11

Effect Coding

Using **effect coding**, the model is:

$$ext{height}_i = eta_0 + eta_1 ext{age}_i + eta_2 ext{sex}_i + \ eta_3 ext{race}_i^{(1)} + \ eta_4 ext{race}_i^{(2)} + arepsilon_i$$

Effect coding will lead to the following linear predictors:

$$\begin{array}{ll} \text{caucasian:} & \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} + \beta_3 1 + \beta_4 0 & = \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} & + \beta_3 \\ \text{asian:} & \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} + \beta_3 0 + \beta_4 1 & = \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} & + \beta_4 \\ \text{other:} & \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} + \beta_3 (-1) + \beta_4 (-1) = \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} & - \beta_3 - \beta_4 \end{array}$$

Effect Coding

13

Dummy coding:

$$eta_0 + eta_1 \mathrm{age} + eta_2 \mathrm{sex} + eta_3 \mathrm{race}_i^{(asian)} + eta_4 \mathrm{race}_i^{(other)}$$

In dummy coding, the intercept β_0 is the expected outcome when **all covariate** values are zero, i.e., for a caucasian (race^(asian) = race^(other) = 0) boy (sex = 0) with zero years of age.

Dummy coding:

$$eta_0 + eta_1 \mathrm{age} + eta_2 \mathrm{sex} + eta_3 \mathrm{race}_i^{(asian)} + eta_4 \mathrm{race}_i^{(other)}$$

In dummy coding, the intercept β_0 is the expected outcome when **all covariate** values are zero, i.e., for a caucasian (race^(asian) = race^(other) = 0) boy (sex = 0) with zero years of age.

Effect coding:

$$eta_0 + eta_1 \mathrm{age} + eta_2 \mathrm{sex} + eta_3 \mathrm{race}^{(1)} + eta_4 \mathrm{race}^{(2)}$$

With effect coding there is no scenario where all effects are zero.

In effect coding the intercept represents the average expected response over all categories (when all other covariates are zero).

$$egin{aligned} ext{height}_{cauc.} &= eta_0 + eta_3 \ ext{height}_{asian} &= eta_0 + eta_4 \ ext{height}_{other} &= eta_0 - eta_3 - eta_4 \end{aligned}$$

In effect coding the intercept represents the average expected response over all categories (when all other covariates are zero).

$$egin{aligned} ext{height}_{cauc.} &= eta_0 + eta_3 \ ext{height}_{asian} &= eta_0 + eta_4 \ ext{height}_{other} &= eta_0 - eta_3 - eta_4 \end{aligned}$$

$$rac{ ext{height}_{cauc.}+ ext{height}_{asian}+ ext{height}_{other}}{3} = rac{eta_0+eta_3+eta_0+eta_4+eta_0-eta_3-eta_4}{3} = rac{3eta_0}{3} = eta_0$$

Multiple Linear Regression in Matrix Notation

The basic model of **multiple linear regression in matrix notation** is

$$\mathbf{y} = \mathbf{X} oldsymbol{eta} + oldsymbol{arepsilon}, \quad \mathrm{E}(oldsymbol{arepsilon}) = \mathbf{0}, \quad \mathrm{var}(oldsymbol{arepsilon}) = \sigma^2 \mathbf{I}$$

$$= egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & & & dots \ dots & & \ddots & dots \ 0 & 0 & \dots & 1 \end{pmatrix}$$

Ι

Multiple Linear Regression in Matrix Notation

The basic model of **multiple linear regression in matrix notation** is

$$\mathbf{y} = \mathbf{X}oldsymbol{eta} + oldsymbol{arepsilon}, \quad \mathrm{E}(oldsymbol{arepsilon}) = oldsymbol{0}, \quad \mathrm{var}(oldsymbol{arepsilon}) = \sigma^2 \mathbf{I} \qquad \qquad \mathbf{I} = egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ arepsilon & arepsilon & arepsilon & arepsilon \ arepsilon \ arepsilon & arepsilon \ arepsilon \ arepsilon & arepsilon \ arepsi$$

(1)

 \cap

$$egin{pmatrix} y_1\ dots\ y_n\end{pmatrix} = egin{pmatrix} 1 & x_{11} & \ldots & x_{1p}\ dots & dots & \ddots & dots\ y_n\end{pmatrix} egin{pmatrix} eta_0\ dots\ y_n\end{pmatrix} + egin{pmatrix} arepsilon_1\ dots\ arepsilon_n\end{pmatrix} \ ecturlines eturlines ecturlines ecturlines ecturlines eturlines ecturlines eturlines etu$$

Sidenote: Tansposing Vectors and Matrices

$$\mathbf{y} = egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} \quad \Rightarrow \quad \mathbf{y}^ op = (y_1, \dots, y_n)$$

Sidenote: Tansposing Vectors and Matrices

$$\mathbf{y} = egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} \quad \Rightarrow \quad \mathbf{y}^ op = (y_1, \dots, y_n)$$

$$\mathbf{X} = egin{pmatrix} 1 & x_{11} & \ldots & x_{1p} \ dots & dots & \ddots & dots \ 1 & x_{n1} & \ldots & x_{np} \end{pmatrix} \quad \Rightarrow \quad \mathbf{X}^ op = egin{pmatrix} 1 & \ldots & 1 \ x_{11} & \ldots & x_{n1} \ dots & dots & dots \ 1 & dots & dots & dots \ x_{1p} & \ldots & x_{np} \end{pmatrix}$$

Estimation via OLS

Ordinary Least Squares (OLS) Estimator

Estimation via OLS

Ordinary Least Squares (OLS) Estimator

$$\sum_{i=1}^n (\underbrace{y_i - \mathbf{x}_i^ op eta}_{\widehat{arepsilon}_i})^2 \longrightarrow \min_{eta}$$

The least squares principle in matrix notation

$$(\mathbf{y} - \mathbf{X} oldsymbol{eta})^ op (\mathbf{y} - \mathbf{X} oldsymbol{eta}) \longrightarrow \min_{oldsymbol{eta}}$$