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Linear Regression
Linear Regression Model:

 

Estimation via OLS:

yi = x⊤
i

β + εi, ,E(εi) = 0 var(εi) = σ2

β̂ = (X
⊤

X)−1X
⊤

y and σ̂
2 = ε̂

⊤
ε̂

1

n − p − 1
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Evaluating Model Assumptions & Fit
Model assumptions about the error terms

homoscedastic
uncorrelated
(normally distributed)

Model assumptions about covariates and their effects

linear effects (i.e., linear in the parameters)
no (multi)collinearity between covariates

Check for outliers and in�uential observations.
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Residuals
Residuals are calculated as

ε̂ = y − Xβ̂
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Residuals
Residuals are calculated as

This can be re-written as

ε̂ = y − Xβ̂

ε̂ = y − Xβ̂

= y − X(X
⊤

X)−1X
⊤

y


β̂

= y − X(X
⊤

X)−1X
⊤


H

y

= y − Hy

= (I − H)y
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The Hat Matrix
The matrix

is called the hat matrix.

It describes the relationship between the �tted values and observed responses:

 is the -th diagonal element of .

H = X(X⊤X)−1X⊤

= X(X
⊤

X)−1X
⊤

y


β̂

=ŷ Hy

hii i H
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Properties of the Residuals
For normally distributed error terms, the distribution of the residuals is

For a single residual: 

ε̂ ∼ N(0, σ
2(I − H))

ε̂ i ∼ N(0, σ
2(1 − hii))
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Properties of the Residuals
For normally distributed error terms, the distribution of the residuals is

For a single residual: 

 

This means that residuals

have an expected value of zero (as are the error terms),
are correlated (even though error terms are not), because the off-diagonal
elements of  are not all 0, and
have heteroscedastic variances (even though error terms do not), since 
differs for each  (depends on ).

⇨ We cannot test certain assumptions using .

ε̂ ∼ N(0, σ
2(I − H))

ε̂ i ∼ N(0, σ
2(1 − hii))

I − H

hii

i xi

ε̂
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Standardized Residuals
The standardized residual is, hence, calculated as

When the model assumptions are ful�lled, standardized residuals are
homoscedastic.

ri = .
ε̂ i

σ̂√1 − hii
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Standardized Residuals
The standardized residual is, hence, calculated as

When the model assumptions are ful�lled, standardized residuals are
homoscedastic.

Standardized residuals can be used for assessing

homoscedasticity,
misspeci�cation of the association structure and
normality of the residuals.

ri = .
ε̂ i

σ̂√1 − hii
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Studentized Residuals
To obtain residuals with a known distribution, we need independence of  and .

⇨ Exclude  from the calculation of .

"Leave-one-out" estimator for :

and for :

ε̂ i σ̂

ε̂ i σ̂

β

β̂(i) = (X⊤
−iX−i)

−1X⊤
−iy−i.

σ2

σ̂2
(i) = (

i−1

∑
k=1

yk − x⊤
k

β̂(i) +
n

∑
k=i+1

yk − x⊤
k

β̂(i))
1

n − p − 1
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Studentized Residuals
Studentized residuals / leave-one-out residuals:

r∗
i

= = ri( )
1/2

∼ t(n − p − 1)
ε̂ i

σ̂(i)√1 − hii

n − p − 1

n − p − r2
i
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Studentized Residuals
Studentized residuals / leave-one-out residuals:

Studentized residuals can be used to identify outliers.

r∗
i

= = ri( )
1/2

∼ t(n − p − 1)
ε̂ i

σ̂(i)√1 − hii

n − p − 1

n − p − r2
i
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Partial Residuals
Since residuals are based on all covariates, it can be dif�cult to identify if
misspeci�cation is due to a particular covariate.

⇨ Separate the effect of one covariate from the residuals.

9



Partial Residuals
Since residuals are based on all covariates, it can be dif�cult to identify if
misspeci�cation is due to a particular covariate.

⇨ Separate the effect of one covariate from the residuals.

Partial residuals are calculated with respect to a particular covariate

Partial residuals can help to identify misspeci�cation of the linear predictor.

ε̂xj,i = yi − β̂0 − … − β̂j−1xi,j−1 − β̂j+1xi,j+1 − … − β̂pxip

= ε̂ i + β̂jxij
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