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Linear Regression & Assumptions

Linear Regression Model:

yi =x, B+ei, E(g)=0, var(e)=o"

We need to evaluate assumptions about

the error terms: covariates and effects:

* homoscedastic e linear effects (i.e, linear in the parameters)
e uncorrelated

S e no (Mmulti)collinearity between covariates
e (normally distributed) ( ) y

and check for outliers and influential observations.



Linearity of the Predictor

Assumption: The model is linear in the regression coefficients.

Y; = Bo + Bizi1 + Baxia + ...+ €
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Linearity of the Predictor

But this may not always be the case:

height

crown-rump length

gestational age age



Linearity of the Predictor

A better fit would be;

crown-rump length
height

gestational age age

But this implies 8 changes with the covariate value.



Linearity of the Predictor

Alternative: Use a transformation of the covariate:

crown-rump length
height

gestational age2 age



Linearity of the Predictor

In general
As long as we can write the model as y; = f(xi)T,B + ¢; we have a linear model.



Linearity of the Predictor

In general
As long as we can write the model as y; = f(xi)T,B + ¢; we have a linear model.

For example,
y; = Bo + P1log(z;) + €
can also be written as

y; = Bo + B1zi + €, with z; = log(z;)



Diagnosis of Misspecified Associations

INn a correctly specified model: residuals are scattered (evenly) around zero

normal uniform skewed

standardized or
studentized residuals

fitted values (or covariate)

The plot looks different depending on the distribution of the fitted values/covariate.



Example: Child Growth

We fit the model

height, = By + B1age, + Bakcal_sd; + ¢;
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Example: Child Growth
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Example: Child Growth

height, = By + (1 1log(age;) + Bokcal_sd; + ¢;
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Assumption of Normality

QQ-plot:
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Assumption of Normality: Example

Plots of the standardized residuals from the original model (linear effect of age):
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Assumption of Normality: Example

Corresponding plots from the model with log(age):
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Collinearity & Multicollinearity

Example:

y = Bo + Brx1 + Baxa + B3T3 + €

If £1 = Bx9, then x1 and x5 are perfectly collinear

y = Bo + (815 + B2)x2 + Baxs + ¢

and it is not possible to estimate both £1 and (5.

14



Collinearity & Multicollinearity

Example:

y = Bo + Brx1 + Baxa + B3T3 + €

If 1 = Bx9, then x1 and x5 are perfectly collinear

y = Po + (815 + B2)x2 + B3x3 + ¢

and it is not possible to estimate both £1 and (5.

Perfect collinearity includes constant variables, because const. = 0x9 + const.

More common: (multiple) highly correlated covariates
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Collinearity & Multicollinearity

The formula for var(3;) can be written as

0.2

(1—-R2) >, (i — ;)

with R? being the coefficient of determination of the regression

Var(Bj) =

X;j =00 +0o1X] + ...+ Q-1Xj-1 +0;Xj11+ ...+ 1Xp + €.
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Collinearity & Multicollinearity

The formula for var(3;) can be written as

0.2

(1—-R2) >, (i — ;)

with R? being the coefficient of determination of the regression

Var(Bj) =

X;j =00 +0o1X] + ...+ Q-1Xj-1 +0;Xj11+ ...+ 1Xp + €.

The stronger the dependence of x; on other covariates (large R?) the larger is the

variance var(Bj).

Also: larger o® = larger var(f;) and more variation in z; = smaller var(f;)
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Variance Inflation Factor

A measure for multicollinearity

1

VIF = s
J

The VIF tells us by which factor the variance of Bj Is iIncreased by the linear
dependence.

Rule of thumb:
VIF; > 10 indicates a serious multicollinearity problem.
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Example: Child Growth Data

Model:

weight, = By + Biage, + Bzheight, + Bskcal_sd; + ¢;

Pearson correlation of the data:

age

correlation

1.00
I 0.75
0.50

0.25

kcal_sd

height

0.00

weight . -0.02

age kcal_sd height weight



Example: Child Growth Data

Model:
weight, = By + Biage, + Bzheight, + Bskcal_sd; + ¢;
Pearson correlation of the data: Variance Inflation Factor:
R2 VIF
age
age 0.842 6.318
correlation height 0.840 6.269
kcal_sd
I 075 kcal_sd 0.023 1.023
0.50

height 0.25

0.00

weight . -0.02

age kcal_sd height weight



What to do about Multicollinearity

e Leave out a problematic covariate?
Most commonly used, but often not a good idea

18



What to do about Multicollinearity

e Leave out a problematic covariate?
Most commonly used, but often not a good idea

e Form a new, combined variable from the correlated variables.

E.g., linear combinations, minimum, maximum, ...
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What to do about Multicollinearity

e Leave out a problematic covariate?
Most commonly used, but often not a good idea

e Form a new, combined variable from the correlated variables.
E.g., linear combinations, minimum, maximum, ...

e Principal Component Regression
Find linear combinations of the correlated variables and include them instead.

o only for continuous variables
o derived components can be difficult to interpret

e Ridge regression (not unbiased)
B=X"X+A)"X"y,

where A < 0 is a tuning parameter that needs to be chosen.
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