Biostatistics I: Linear Regression

Model Diagnostics II: Linearity, Normality & Multicollinearity

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

► n.erler@erasmusmc.nl

Linear Regression & Assumptions

Linear Regression Model:

$$y_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \quad \mathrm{E}(arepsilon_i) = 0, \quad \mathrm{var}(arepsilon_i) = \sigma^2$$

We need to evaluate assumptions about

the error terms:

- homoscedastic
- uncorrelated
- (normally distributed)

covariates and effects:

- linear effects (i.e., linear in the parameters)
- no (multi)collinearity between covariates

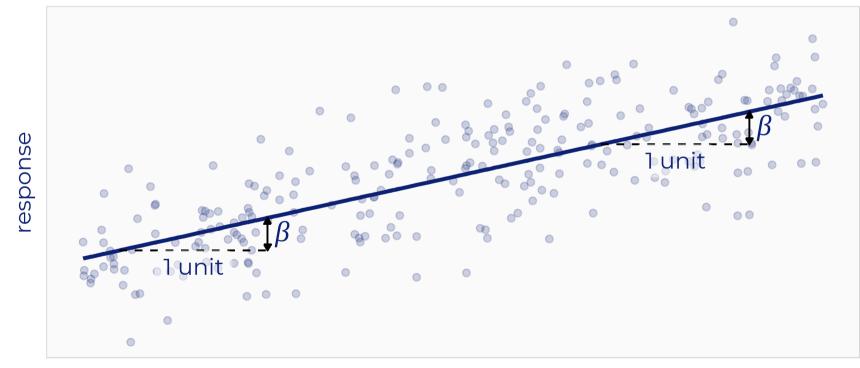
and check for outliers and influential observations.

Assumption: The model is linear in the regression coefficients.

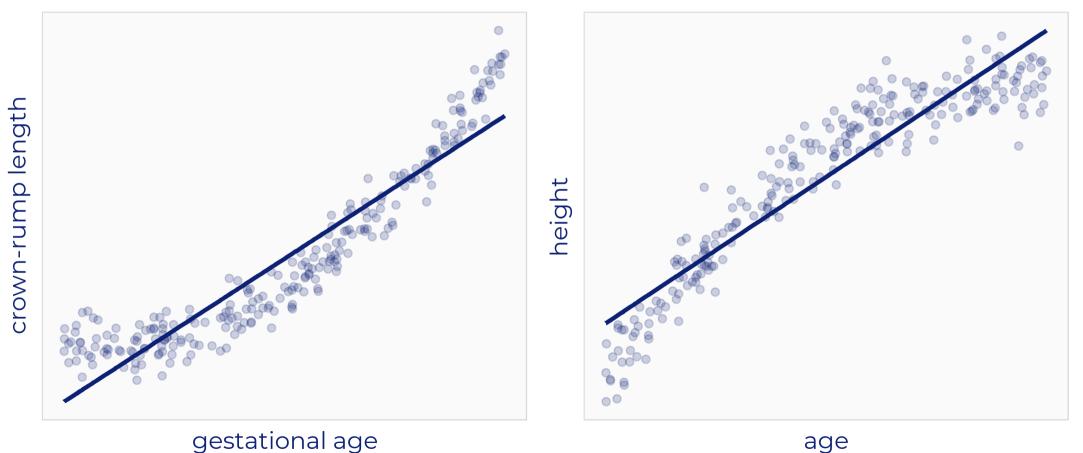
$$y_i=eta_0+eta_1x_{i1}+eta_2x_{i2}+\ldots+arepsilon_i$$

Assumption: The model is linear in the regression coefficients.

$$y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + arepsilon_i$$



But this may not always be the case:

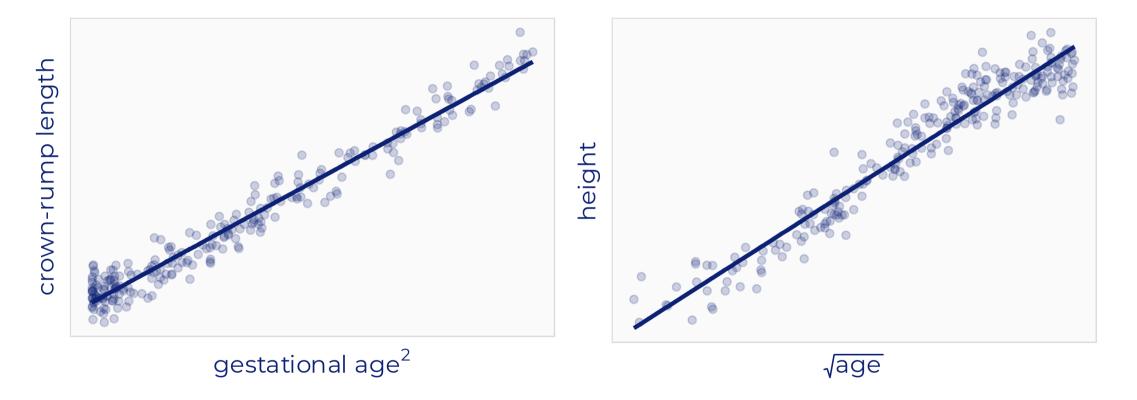


A better fit would be:



But this implies β changes with the covariate value.

Alternative: Use a transformation of the covariate:



In general

As long as we can write the model as $y_i = f(\mathbf{x}_i)^ op oldsymbol{eta} + arepsilon_i$ we have a linear model.

In general

As long as we can write the model as $y_i = f(\mathbf{x}_i)^ op oldsymbol{eta} + arepsilon_i$ we have a linear model.

For example,

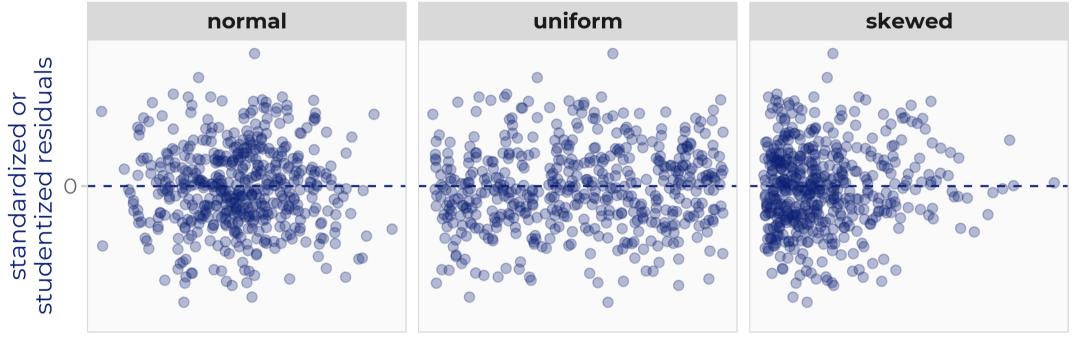
$$y_i = eta_0 + eta_1 \log(x_i) + arepsilon_i$$

can also be written as

$$y_i = eta_0 + eta_1 z_i + arepsilon_i, \qquad ext{with } z_i = \log(x_i)$$

Diagnosis of Misspecified Associations

In a correctly specified model: residuals are scattered (evenly) around zero



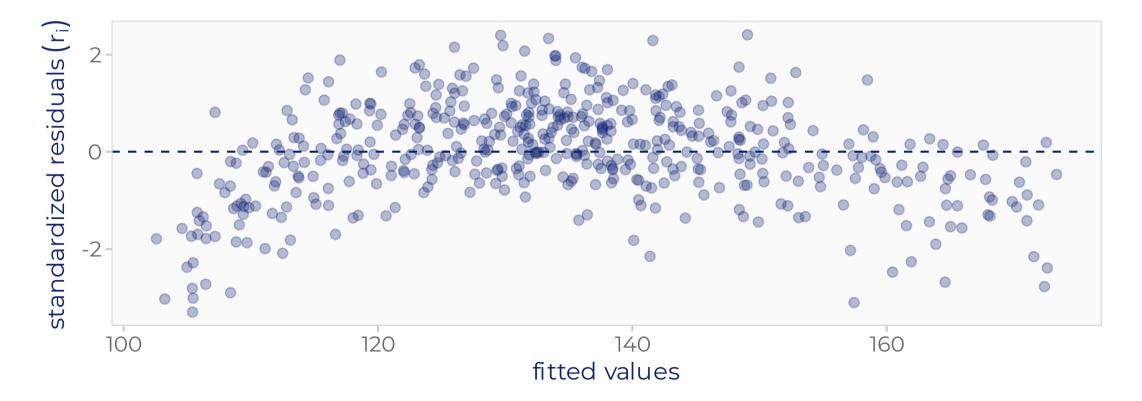
fitted values (or covariate)

The plot looks different depending on the distribution of the fitted values/covariate.

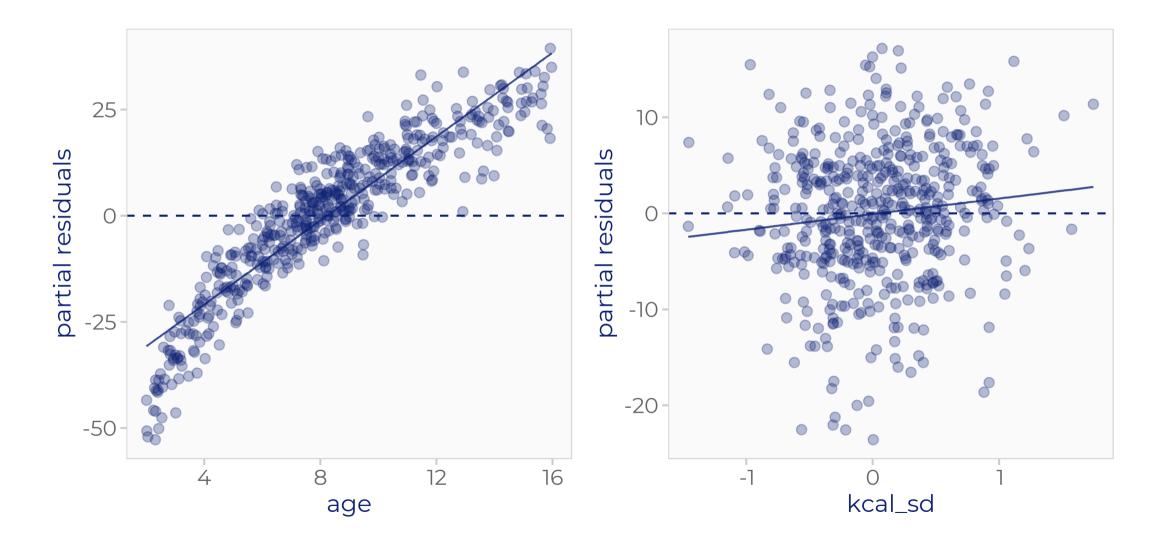
Example: Child Growth

We fit the model

$$\operatorname{height}_{i} = \beta_{0} + \beta_{1}\operatorname{age}_{i} + \beta_{2}\operatorname{kcal_sd}_{i} + \varepsilon_{i}$$

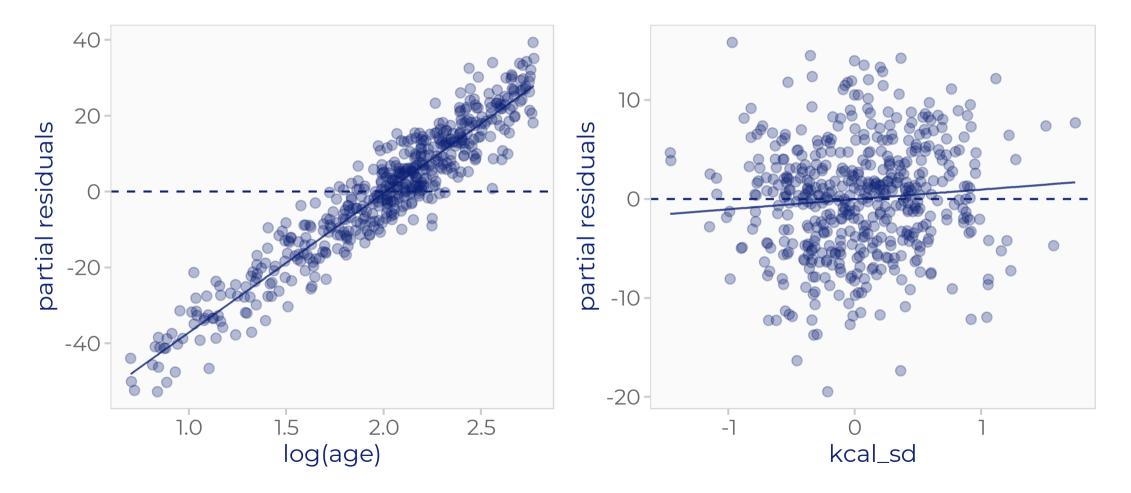


Example: Child Growth



Example: Child Growth

$$ext{height}_i = eta_0 + eta_1 \log(ext{age}_i) + eta_2 ext{kcal_sd}_i + arepsilon_i$$

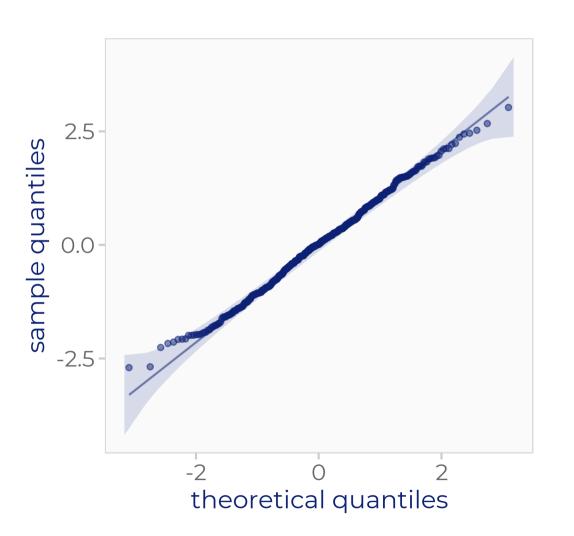


Assumption of Normality

QQ-plot:

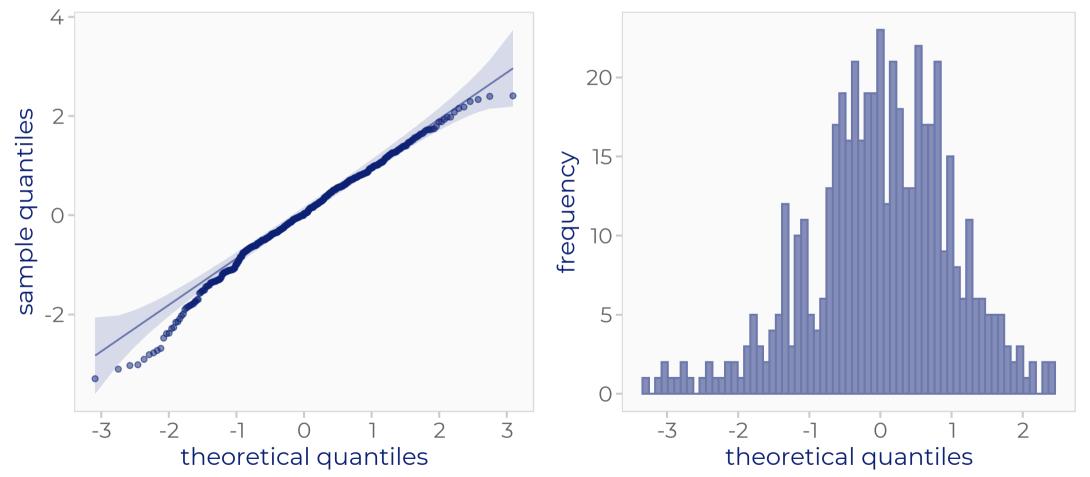
- empirical vs theoretical quantiles
- dots should be close to the 45 degree line

Bootstrap can be used to obtain confidence envelopes.



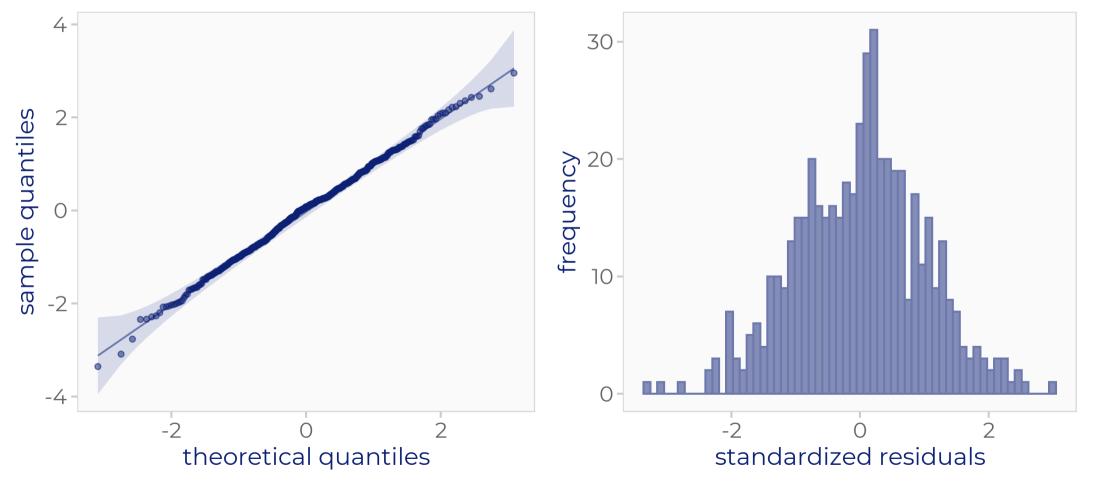
Assumption of Normality: Example

Plots of the standardized residuals from the original model (linear effect of age):



Assumption of Normality: Example

Corresponding plots from the model with log(age):



Example:

$$y=eta_0+eta_1x_1+eta_2x_2+eta_3x_3+arepsilon$$

If $x_1 = 5x_2$, then x_1 and x_2 are perfectly **collinear**

$$y=eta_0+(eta_15+eta_2)x_2+eta_3x_3+arepsilon$$

and it is not possible to estimate both β_1 and β_2 .

Example:

$$y=eta_0+eta_1x_1+eta_2x_2+eta_3x_3+arepsilon$$

If $x_1 = 5x_2$, then x_1 and x_2 are perfectly **collinear**

$$y=eta_0+(eta_15+eta_2)x_2+eta_3x_3+arepsilon$$

and it is not possible to estimate both β_1 and β_2 .

Perfect collinearity includes constant variables, because $const. = 0x_2 + const.$

More common: (multiple) highly correlated covariates

The formula for $\operatorname{var}(\hat{\beta}_j)$ can be written as

$$ext{var}({\hateta}_j) = rac{\sigma^2}{(1-R_j^2)\sum_{i=1}^n (x_{ij}-ar{x}_j)^2},$$

with R_j^2 being the coefficient of determination of the regression

$$\mathbf{x}_j = lpha_0 + lpha_1 \mathbf{x}_1 + \ldots + lpha_{j-1} \mathbf{x}_{j-1} + lpha_j \mathbf{x}_{j+1} + \ldots + lpha_{p-1} \mathbf{x}_p + \boldsymbol{\varepsilon}.$$

The formula for $\mathrm{var}(\hat{\beta}_j)$ can be written as

$$ext{var}({\hateta}_j) = rac{\sigma^2}{(1-R_j^2)\sum_{i=1}^n (x_{ij}-ar{x}_j)^2},$$

with R_j^2 being the coefficient of determination of the regression

$$\mathbf{x}_j = lpha_0 + lpha_1 \mathbf{x}_1 + \ldots + lpha_{j-1} \mathbf{x}_{j-1} + lpha_j \mathbf{x}_{j+1} + \ldots + lpha_{p-1} \mathbf{x}_p + \boldsymbol{\varepsilon}.$$

The **stronger** the **dependence** of x_j on other covariates (large R_j^2) the **larger** is the **variance** $var(\hat{\beta}_j)$.

Also: larger $\sigma^2 \Rightarrow \operatorname{larger} \operatorname{var}(\hat{\beta}_j)$ and more variation in $x_j \Rightarrow \operatorname{smaller} \operatorname{var}(\hat{\beta}_j)$

Variance Inflation Factor

A measure for **multicollinearity**

$$VIF_j = rac{1}{1-R_j^2}$$

The VIF tells us by which factor the variance of $\hat{\beta}_j$ is increased by the linear dependence.

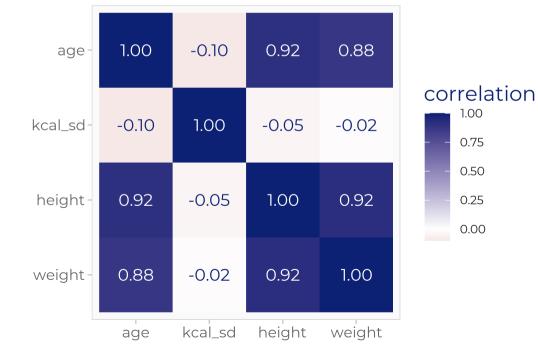
Rule of thumb:

 $VIF_j > 10$ indicates a serious multicollinearity problem.

Example: Child Growth Data

Model:

$$ext{weight}_i = eta_0 + eta_1 ext{age}_i + eta_2 ext{height}_i + eta_3 ext{kcal_sd}_i + arepsilon_i$$

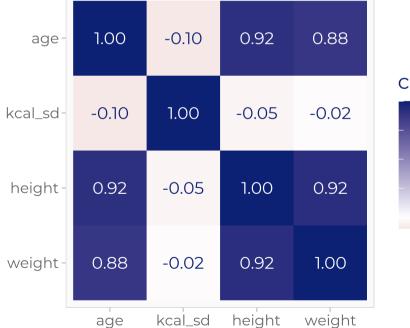


Pearson correlation of the data:

Example: Child Growth Data

Model:

$$ext{weight}_i = eta_0 + eta_1 ext{age}_i + eta_2 ext{height}_i + eta_3 ext{kcal_sd}_i + arepsilon_i$$



Pearson correlation of the data:

COTENSION 1.00 0.75 0.50 0.25 0.00

Variance Inflation Factor:

R² VIF

age	0.842	6.318
height	0.840	6.269
kcal_sd	0.023	1.023

• Leave out a problematic covariate? Most commonly used, but often not a good idea

- Leave out a problematic covariate? Most commonly used, but often not a good idea
- Form a new, **combined variable** from the correlated variables. E.g., linear combinations, minimum, maximum, ...

- Leave out a problematic covariate? Most commonly used, but often not a good idea
- Form a new, **combined variable** from the correlated variables. E.g., linear combinations, minimum, maximum, ...

• Principal Component Regression

Find linear combinations of the correlated variables and include them instead.

- only for continuous variables
- derived components can be difficult to interpret

- Leave out a problematic covariate? Most commonly used, but often not a good idea
- Form a new, **combined variable** from the correlated variables. E.g., linear combinations, minimum, maximum, ...

• Principal Component Regression

Find linear combinations of the correlated variables and include them instead.

- only for continuous variables
- derived components can be difficult to interpret
- Ridge regression (not unbiased)

$$\hat{eta} = (\mathbf{X}^{ op} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{ op} \mathbf{y},$$

where $\lambda \leq 0$ is a tuning parameter that needs to be chosen.