Biostatistics I: Linear Regression

The Least Squares Estimator

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

n.erler@erasmusmc.nl

y [@N_Erler](https://twitter.com/N_Erler)

Linear Regression Model:

$$
y_i = \mathbf{x}_i^\top \boldsymbol\beta + \varepsilon_i, \quad \mathrm{E}(\varepsilon_i) = 0, \quad \mathrm{var}(\varepsilon) = \sigma^2
$$

 $\overline{i=1}$

 $\hat{\varepsilon}_{i}^{\,2}$ i

Goal:

 \Rightarrow find $\bm{\beta}$ that describe the "optimal" regression line

Approach:

$$
\Rightarrow \text{Minimise the residuals } \hat{\varepsilon}_i \qquad \text{(but: minimizing } \sum_{i=1}^n \hat{\varepsilon}_i \text{ did not work)}
$$

Solution:

 \Rightarrow Minimize the sum of squared residuals \boldsymbol{n} ∑

$$
\frac{1}{\sqrt{2}}\left(\frac{1}{2} \right)
$$

The Ordinary Least Squares (OLS) Estimator

In formal notation:

The OLS estimates $\boldsymbol{\hat{\beta}}$ are those values that $\boldsymbol{\text{minimize}}$ the sum of squared **residuals**.

The Ordinary Least Squares (OLS) Estimator

In formal notation:

The OLS estimates $\boldsymbol{\hat{\beta}}$ are those values that $\boldsymbol{\text{minimize}}$ the sum of squared **residuals**.

Requirements for a **unique solution**:

- Theoretically, $n\geq p+1$, but to get reasonably precise estimates: $n\gg p$
- Covariates cannot be linear combinations, nor constants.

The OLS Estimator

The OLS estimator for the regression coefficients is

$$
\boldsymbol{\hat{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.
$$

The OLS Estimator

The OLS estimator for the regression coefficients is

$$
\boldsymbol{\hat{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.
$$

The estimator for the residual variance is

$$
\hat{\sigma}^2 = \frac{1}{n-p-1}\boldsymbol{\hat{\varepsilon}}^\top\boldsymbol{\hat{\varepsilon}}
$$

with residuals $\boldsymbol{\hat{\varepsilon}} = \mathbf{y} - \mathbf{X}\boldsymbol{\hat{\beta}}.$

 $\widehat{\boldsymbol{\varepsilon}} = \mathbf{y} - \mathbf{X}\boldsymbol{\hat{\beta}}.$ \Rightarrow fitted values $\mathbf{\widehat{y}} = \mathbf{X}\boldsymbol{\hat{\beta}}$

The OLS Estimator

The OLS estimator for the regression coefficients is

$$
\boldsymbol{\hat{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.
$$

The estimator for the residual variance is

$$
\hat{\sigma}^2 = \frac{1}{n-p-1}\boldsymbol{\hat{\varepsilon}}^\top\boldsymbol{\hat{\varepsilon}}
$$

 $\widehat{\boldsymbol{\varepsilon}} = \mathbf{y} - \mathbf{X}\boldsymbol{\hat{\beta}}.$ \Rightarrow fitted values $\mathbf{\widehat{y}} = \mathbf{X}\boldsymbol{\hat{\beta}}$ with residuals $\boldsymbol{\hat{\varepsilon}} = \mathbf{y} - \mathbf{X}\boldsymbol{\hat{\beta}}.$

The $\bm{\mathsf{variance\text{-}covariance\text{-}matrix}}$ and $\bm{\mathsf{standard\text{-}error}}$ of $\bm{\hat{\beta}}$ are

$$
\mathrm{cov}(\boldsymbol{\hat{\beta}})=\sigma^2(\mathbf{X}^\top\mathbf{X})^{-1}\quad\text{and}\quad\mathrm{se}(\hat{\beta}_j)=\sqrt{\sigma^2(\mathbf{X}^\top\mathbf{X})^{-1}_{jj}},\quad j=0,1,\ldots,p.
$$

No Systematic Error

Error terms have mean zero, i.e.,

$$
\mathrm{E}(\boldsymbol{\varepsilon})=\mathbf{0}.
$$

No Systematic Error

Error terms have mean zero, i.e.,

$$
\mathrm{E}(\boldsymbol{\varepsilon})=\mathbf{0}.
$$

Covariates Independent of Errors

The error term is independent of the regressors, i.e,

$$
\text{cov}(\varepsilon_i, \mathbf{x}_{ij}) = \mathbf{0}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, p.
$$

No Systematic Error

Error terms have mean zero, i.e.,

$$
\mathrm{E}(\boldsymbol{\varepsilon})=\mathbf{0}.
$$

Covariates Independent of Errors

The error term is independent of the regressors, i.e,

$$
\text{cov}(\varepsilon_i, \mathbf{x}_{ij}) = \mathbf{0}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, p.
$$

Independent Error Terms

Error terms are not correlated with each other:

$$
\mathrm{cov}(\varepsilon_i,\varepsilon_j)=0 \quad \forall i\neq j
$$

Homoscedasticity

The error term has constant variance, i.e., $\text{var}(\varepsilon_i)=\sigma^2,\quad i=1,\ldots,n.$

Linearity

The model is **linear in the regression coefficients** and the error term.

Linearity

The model is **linear in the regression coefficients** and the error term.

No linear dependence

Covariates must be **linearly independent**, i.e., it is not possible to calculate covariates as a linear combination of other covariates.

In mathematical terms: $Pr(\text{rank}(X) = p) = 1$

Linearity

The model is **linear in the regression coefficients** and the error term.

No linear dependence

Covariates must be **linearly independent**, i.e., it is not possible to calculate covariates as a linear combination of other covariates.

In mathematical terms: $\quad \Pr(\text{rank}(X) = p) = 1$

Normally distributed Error Terms (optional)

 $\varepsilon_i \sim N(0,\sigma^2) \quad$ (Needed for hypothesis tests, confidence intervals, p-values, ...)

Unbiasedness

If all assumptions★ hold, the OLS estimator is **unbiased**.

 \Rightarrow The expected value of the parameters are the same as the true parameters:

$$
\mathrm{E}(\boldsymbol{\hat{\beta}})=\boldsymbol{\beta},\quad \mathrm{E}(\hat{\sigma}^{2})=\sigma^{2}
$$

★ The assumption of normally distributed error terms is not needed here.

Unbiasedness

If all assumptions★ hold, the OLS estimator is **unbiased**.

 \Rightarrow The expected value of the parameters are the same as the true parameters:

$$
\mathrm{E}(\boldsymbol{\hat{\beta}})=\boldsymbol{\beta},\quad \mathrm{E}(\hat{\sigma}^{2})=\sigma^{2}
$$

★ The assumption of normally distributed error terms is not needed here.

Gauß-Markov theorem: the OLS estimator is the **best linear unbiased estimator** (BLUE) if

$$
\mathrm{E}(\varepsilon_i)=0,\quad \mathrm{var}(\varepsilon_i)=\sigma^2,\quad \mathrm{cov}(\varepsilon_i,\varepsilon_j)=0\quad \forall i\neq j,\quad i,j=1,\ldots,n,
$$

i.e., the OLS estimator has the smallest variance among all estimators that are unbiased.

Properties of the OLS Estimator

Consistency

If for $n\to\infty$

$$
\sum_{i=1}^n(\mathbf{x}_i-\mathbf{\bar{x}})^2\to\infty,
$$

the OLS estimator is **consistent**, i.e,

$$
\operatorname{E}(\boldsymbol{\hat{\beta}}_n - \boldsymbol{\beta}) \overset{d}{\longrightarrow} \mathbf{0}.
$$

Properties of the OLS Estimator

Distributional Assumptions If

$$
\varepsilon_i \sim N(0, \sigma^2), \quad i=1, \ldots, n,
$$

it follows that the regression coefficients are normally distributed as well:

$$
\boldsymbol{\hat{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^\top\mathbf{X})^{-1}\right)
$$

Properties of the OLS Estimator

Distributional Assumptions If

$$
\varepsilon_i \sim N(0, \sigma^2), \quad i=1, \ldots, n,
$$

it follows that the regression coefficients are normally distributed as well:

$$
\boldsymbol{\hat{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^\top\mathbf{X})^{-1}\right)
$$

Note: The normality assumption applies to the error terms, not the response.

But the response inherits that normal distribution:

$$
\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}) \quad \Rightarrow \quad \mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})
$$

Large Sample Properties

For very large sample sizes

$$
\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\rightarrow} N\left(0, \sigma^2 (X^\top X)^{-1}\right),
$$

i.e, the distribution of $\hat{\beta}$ resembles more and more a normal distribution with mean β and variance $\overset{\cdot}{\sigma}^2(X^\top X)^{-1}/n$.

Resulting hypothesis tests, confidence intervals, ... are approximate.