Biostatistics I: Linear Regression

The Least Squares Estimator

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

∑n.erler@erasmusmc.nl

♥ @N_Erler

Linear Regression Model:

$$y_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \quad \mathrm{E}(arepsilon_i) = 0, \quad \mathrm{var}(arepsilon) = \sigma^2$$

Goal:

 \Rightarrow find $oldsymbol{eta}$ that describe the "optimal" regression line

Approach:

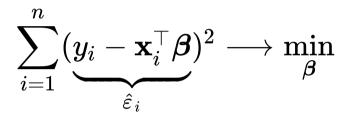
 \Rightarrow Minimise the residuals $\hat{\varepsilon}_i$ (but: minimizing $\sum_{i=1}^n \hat{\varepsilon}_i$ did not work)

Solution:

 \Rightarrow Minimize the sum of squared residuals $\sum_{i}^{n} \hat{\varepsilon}_{i}^{2}$

The Ordinary Least Squares (OLS) Estimator

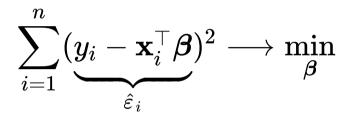
In formal notation:



The OLS estimates $\hat{m{eta}}$ are those values that **minimize the sum of squared residuals**.

The Ordinary Least Squares (OLS) Estimator

In formal notation:



The OLS estimates $\hat{m{eta}}$ are those values that **minimize the sum of squared residuals**.

Requirements for a **unique solution**:

- Theoretically, $n \geq p+1$, but to get reasonably precise estimates: $n \gg p$
- Covariates cannot be linear combinations, nor constants.

The OLS Estimator

The OLS estimator for the regression coefficients is

$$oldsymbol{\hat{eta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}.$$

The OLS Estimator

The OLS estimator for the regression coefficients is

$$oldsymbol{\hat{eta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}.$$

The estimator for the residual variance is

$$\hat{\sigma}^2 = rac{1}{n-p-1} oldsymbol{\hat{arepsilon}}^{ op} oldsymbol{\hat{arepsilon}}$$

with residuals $oldsymbol{\hat{arepsilon}} = \mathbf{y} - \mathbf{X} oldsymbol{\hat{eta}}.$

 \Rightarrow fitted values $\mathbf{\hat{y}} = \mathbf{X} \hat{oldsymbol{eta}}$

The OLS Estimator

The OLS estimator for the regression coefficients is

$$oldsymbol{\hat{eta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}.$$

The estimator for the residual variance is

$$\hat{\sigma}^2 = rac{1}{n-p-1} oldsymbol{\hat{arepsilon}}^{ op} oldsymbol{\hat{arepsilon}}$$

with residuals $\hat{oldsymbol{arepsilon}} = \mathbf{y} - \mathbf{X} \hat{oldsymbol{eta}}$. \Rightarrow fitted values $\hat{\mathbf{y}} = \mathbf{X} \hat{oldsymbol{eta}}$

The variance-covariance matrix and standard error of $\hat{oldsymbol{eta}}$ are

$$\mathrm{cov}(\boldsymbol{\hat{oldsymbol{\beta}}}) = \sigma^2(\mathbf{X}^{ op}\mathbf{X})^{-1} \quad ext{and} \quad \mathrm{se}(\hat{oldsymbol{\beta}}_j) = \sqrt{\sigma^2(\mathbf{X}^{ op}\mathbf{X})_{jj}^{-1}}, \quad j=0,1,\ldots,p.$$

No Systematic Error

Error terms have mean zero, i.e.,

$$E(\boldsymbol{\varepsilon}) = \mathbf{0}.$$

No Systematic Error

Error terms have mean zero, i.e.,

$$E(\boldsymbol{\varepsilon}) = \mathbf{0}.$$

Covariates Independent of Errors

The error term is independent of the regressors, i.e,

$$\operatorname{cov}(arepsilon_i, \mathbf{x}_{ij}) = \mathbf{0}, \quad i = 1, \dots, n, \quad j = 1, \dots, p.$$

No Systematic Error

Error terms have mean zero, i.e.,

$$E(\boldsymbol{\varepsilon}) = \mathbf{0}.$$

Covariates Independent of Errors

The error term is independent of the regressors, i.e,

$$\operatorname{cov}(arepsilon_i, \mathbf{x}_{ij}) = \mathbf{0}, \quad i = 1, \dots, n, \quad j = 1, \dots, p.$$

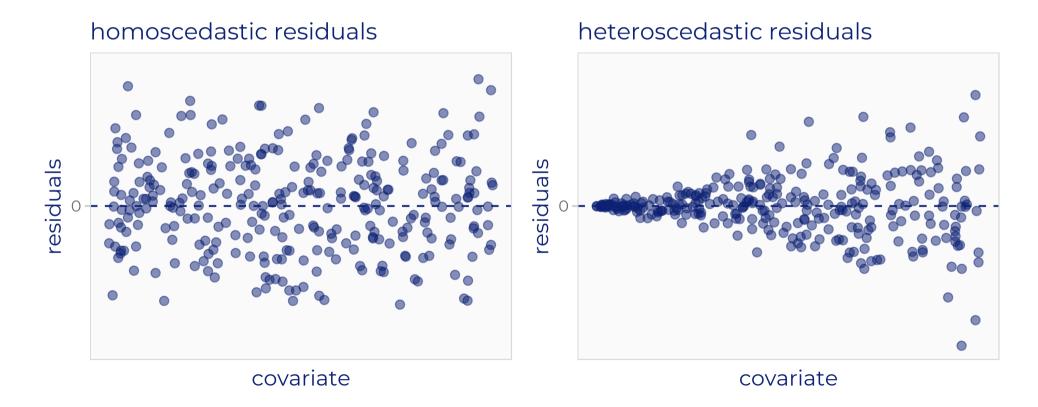
Independent Error Terms

Error terms are not correlated with each other:

$$\mathrm{cov}(arepsilon_i,arepsilon_j)=0 \quad orall i
eq j$$

Homoscedasticity

The error term has constant variance, i.e., $\mathrm{var}(arepsilon_i)=\sigma^2, \quad i=1,\ldots,n.$



Linearity

The model is **linear in the regression coefficients** and the error term.

Linearity

The model is **linear in the regression coefficients** and the error term.

No linear dependence

Covariates must be **linearly independent**, i.e., it is not possible to calculate covariates as a linear combination of other covariates.

In mathematical terms: $\Pr(\operatorname{rank}(X) = p) = 1$

Linearity

The model is **linear in the regression coefficients** and the error term.

No linear dependence

Covariates must be **linearly independent**, i.e., it is not possible to calculate covariates as a linear combination of other covariates.

In mathematical terms: $\Pr(\operatorname{rank}(X) = p) = 1$

Normally distributed Error Terms (optional)

 $arepsilon_i \sim N(0,\sigma^2)$ (Needed for hypothesis tests, confidence intervals, p-values, ...)

Unbiasedness

If all assumptions^{*} hold, the OLS estimator is **unbiased**.

 \Rightarrow The expected value of the parameters are the same as the true parameters:

$$\mathrm{E}(\boldsymbol{\hat{oldsymbol{\beta}}})=oldsymbol{eta}, \quad \mathrm{E}(\hat{\sigma}^2)=\sigma^2$$

* The assumption of normally distributed error terms is not needed here.

Unbiasedness

If all assumptions^{*} hold, the OLS estimator is **unbiased**.

 \Rightarrow The expected value of the parameters are the same as the true parameters:

$$\mathrm{E}(\boldsymbol{\hat{oldsymbol{\beta}}}) = \boldsymbol{eta}, \quad \mathrm{E}(\hat{\sigma}^2) = \sigma^2$$

* The assumption of normally distributed error terms is not needed here.

Gauß-Markov theorem: the OLS estimator is the best linear unbiased estimator (BLUE) if

$$\mathrm{E}(arepsilon_i)=0, \quad \mathrm{var}(arepsilon_i)=\sigma^2, \quad \mathrm{cov}(arepsilon_i,arepsilon_j)=0 \quad orall i
eq j, \quad i,j=1,\ldots,n,$$

i.e., the OLS estimator has the smallest variance among all estimators that are unbiased.

Consistency

If for $n
ightarrow \infty$

$$\sum_{i=1}^n (\mathbf{x}_i - ar{\mathbf{x}})^2 o \infty,$$

the OLS estimator is **consistent**, i.e,

$$\mathrm{E}(\boldsymbol{\hat{eta}}_n - \boldsymbol{eta}) \stackrel{d}{\longrightarrow} \mathbf{0}.$$

Distributional Assumptions

$$arepsilon_i \sim N(0,\sigma^2), \quad i=1,\ldots,n,$$

it follows that the regression coefficients are normally distributed as well:

$$oldsymbol{\hat{eta}} \sim N\left(oldsymbol{eta}, \sigma^2(\mathbf{X}^{ op}\mathbf{X})^{-1}
ight)$$

Distributional Assumptions

$$arepsilon_i \sim N(0,\sigma^2), \quad i=1,\ldots,n,$$

it follows that the regression coefficients are normally distributed as well:

$$oldsymbol{\hat{eta}} \sim N\left(oldsymbol{eta}, \sigma^2(\mathbf{X}^{ op}\mathbf{X})^{-1}
ight)$$

Note: The normality assumption applies to the error terms, not the response.

But the response inherits that normal distribution:

$$oldsymbol{arepsilon} oldsymbol{arepsilon} \sim N(oldsymbol{0},\sigma^2 \mathbf{I}) \quad \Rightarrow \quad \mathbf{y} \sim N(\mathbf{X}oldsymbol{eta},\sigma^2 \mathbf{I})$$

Large Sample Properties

For very large sample sizes

$$\sqrt{n}(\hat{eta}-eta) \stackrel{d}{
ightarrow} N\left(0,\sigma^2(X^ op X)^{-1}
ight),$$

i.e, the distribution of $\hat{\beta}$ resembles more and more a normal distribution with mean β and variance $\hat{\sigma}^2 (X^\top X)^{-1}/n$.

Resulting hypothesis tests, confidence intervals, ... are approximate.