Biostatistics I: Linear Regression

Hypothesis Tests & Model Fit

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

∑n.erler@erasmusmc.nl

♥ @N_Erler

Linear Regression Model:

$$y_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \quad \mathrm{E}(arepsilon_i) = 0, \quad \mathrm{var}(arepsilon_i) = \sigma^2$$

Estimation via OLS:

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y} \qquad ext{and} \qquad \hat{\sigma}^2 = rac{1}{n-p-1} oldsymbol{\hat{arepsilon}}^{ op} oldsymbol{\hat{arepsilon}}$$

$$\operatorname{height}_i = \beta_0 + \beta_1 \operatorname{age}_i + \beta_2 \operatorname{sex}_i + \varepsilon_i$$

$$\operatorname{height}_i = \beta_0 + \beta_1 \operatorname{age}_i + \beta_2 \operatorname{sex}_i + \varepsilon_i$$

How confident are we that the observed difference is "real"?

Because we have a (random) sample of the data, there is **always some difference**, even when the true effect is zero.

Because we have a (random) sample of the data, there is **always some difference**, even when the true effect is zero.

likely • When we know the distribution of $\hat{oldsymbol{eta}}$ we can calculate how (un)likely the observed difference is if there is no effect. unlikely no effect

Distribution of the OLS estimates:

$$\mathsf{lf}\, \varepsilon_i \sim N(0,\sigma^2) \texttt{:} \qquad \qquad \boldsymbol{\hat{\beta}} \sim N\!\left(\boldsymbol{\beta}, \underbrace{\sigma^2(\mathbf{X}^\top \mathbf{X})^{-1}}_{\mathrm{var}(\boldsymbol{\hat{\beta}})}\right)$$

Distribution of the OLS estimates:

$$|\mathsf{f}\, \varepsilon_i \sim N(0,\sigma^2): \qquad \qquad \boldsymbol{\hat{\beta}} \sim N\!\left(\boldsymbol{\beta}, \underbrace{\sigma^2(\mathbf{X}^\top \mathbf{X})^{-1}}_{\mathrm{var}(\boldsymbol{\hat{\beta}})}\right)$$

Standardized effect with estimated variance $\hat{\sigma}_j$:

$$rac{\hat{eta}_j - eta_j}{\hat{\sigma}_j} \sim t(n-p-1), \hspace{1em} j = 0, \dots, p$$

 eta_j is the (assumed) true value, σ_j is the standard deviation of \hat{eta}_j

t(n-p-1) is the **Student's** *t*-distribution with n-p-1 degrees of freedom.

Research Question:

Does \mathbf{x}_j contribute (significantly) to the model (i.e., explain variation in \mathbf{y})?

Research Question:

Does \mathbf{x}_j contribute (significantly) to the model (i.e., explain variation in \mathbf{y})?

Corresponding hypothesis:

$$H_0:eta_j=0, \quad H_1:eta_j
eq 0.$$

In general:

$$H_0:eta_j=eta_{0j},\quad H_1:eta_j
eqeta_{0j}$$

Research Question:

Does \mathbf{x}_j contribute (significantly) to the model (i.e., explain variation in \mathbf{y})?

Corresponding hypothesis:

$$H_0:eta_j=0, \quad H_1:eta_j
eq 0.$$

In general:

$$H_0:eta_j=eta_{0j},\quad H_1:eta_j
eqeta_{0j}$$

The test statistic is the standardized regression coefficient

$$T_j = rac{{\hateta}_j - {eta}_{0j}}{{\hat\sigma}_j}, \quad j=0,\ldots,p.$$

null hypothesis $H_0:eta_j=eta_{0j}\ H_0:eta_j=eta_{0j}\ H_0:eta_j=eta_{0j}$

alternative hypothesis

 $egin{aligned} H_1:eta_j
eqeta_{0j}\ H_1:eta_j<eta_{0j}\ H_1:eta_j>eta_{0j} \end{aligned}$

rejection if $|T_j| > t_{1-lpha/2}(n-p-1) \ T_j < -t_{1-lpha}(n-p-1) \ T_j > t_{1-lpha}(n-p-1)$

- n = 108
- p = 2
- df = 108 2 1 = 105

• lpha=0.05

$$\bullet \ -t_{1-\alpha/2}=-1.98$$

•
$$t_{1-lpha/2}=$$
 1.98

• $\hat{eta}_2 = -2.14$ • $\hat{\sigma}_2 = 0.94$ • $\beta_{02} = 0$ • $T_2 = \frac{-2.14}{0.94} = -2.27$

⇒ Reject the null hypothesis that sex has no effect on height.

Confidence Interval

The (two-sided) (1-lpha)100% confidence interval for eta_{0j} can be calculated as

$$\left[{\hat eta}_j - {\hat \sigma}_j t_{1-lpha/2} (n-p-1), \quad {\hat eta}_j + {\hat \sigma}_j t_{1-lpha/2} (n-p-1)
ight]$$

by solving
$$\left|rac{\hat{eta}_j-eta_{0j}}{\hat{\sigma}_j}
ight|>t_{1-lpha/2}(n-p-1)$$
 for $eta_{0j}.$

Confidence Interval

The (two-sided) $(1 - \alpha)100\%$ confidence interval for β_{0j} can be calculated as

$$egin{bmatrix} \hat{eta}_j - \hat{\sigma}_j t_{1-lpha/2}(n-p-1), & \hat{eta}_j + \hat{\sigma}_j t_{1-lpha/2}(n-p-1) \end{bmatrix}$$

by solving
$$\left|rac{eta_j-eta_{0j}}{\hat{\sigma}_j}
ight|>t_{1-lpha/2}(n-p-1)$$
 for $eta_{0j}.$

In our example:

The 95% confidence interval for β_2 is

[-2.14 - 0.94 imes 1.98, -2.14 + 0.94 imes 1.98] = [-4.01, -0.27]

P-value

The **p-value** is the probability to obtain the observed parameter estimate or a more extreme value (into the direction of H_1) **under the null-hypothesis**.

$$p=2\min\{\Pr(t\leq T\mid H_0), \; \Pr(t\geq T\mid H_0)\}$$

In the example: p=2 imes 0.0127=0.0253

Example: Child Growth (smaller sample)

How do things change if we had a **smaller sample**?

• $n = 32 \Rightarrow df = 29$ • $t_{1-\alpha/2} = 2.05$ • $\hat{\beta}_2 = -3.21$ • $\hat{\sigma}_2 = 1.97$

• $T_2 = \frac{-3.21}{1.97} = -1.63$

⇒ Do not reject the null hypothesis that sex has no effect on height.

Interpretation of Test Results

Example with n = 108:

"There is a difference in height between boys and girls."

Example with n = 32:

"There is no evidence for a difference in height between boys and girls."

Interpretation of Test Results

Example with n = 108:

"There is a difference in height between boys and girls."

Example with n = 32:

"There is no evidence for a difference in height between boys and girls."

Possible phrasing:

- "... height was associated with sex ..." or "... girls were 2.14cm shorter than boys ..."
- "... there was no evidence for an association between height and sex ..."
- "... we did not find an association between height and sex ..."

Do NOT use:

- "... there was no association/effect/difference ..."
- "... we found a non-significant association ..."
- "... with a trend towards significance ..."

Model Fit

How much of the variation in \mathbf{y} is explained by the model?

Model Fit

How much of the variation in ${f y}$ is explained by the model?

total variation

residual variation

explained variation

covariate

covariate

Overall-F-Test (Goodness of Fit Test)

Simultaneous test for all regression coefficients:

$$H_0: eta_1=eta_2=\ldots=eta_p=0, \qquad H_1: eta_j
eq 0 ext{ for at least one } j.$$

The **test statistic** of the Goodness of fit test is:

$$F = \frac{\text{ESS}}{\text{RSS}} \frac{n - p - 1}{p}$$

Under H_0 :

$$F\sim F(p,n-p-1)$$

 \Rightarrow Reject the null hypothesis if $F>F_{1-lpha}(p,n-p-1).$

Overall-F-Test (Goodness of Fit Test)

The test statistic F and sums of squares are often shown in an **analysis of variance** table:

	variation	degrees of freedom	mean squared error	test statistic
explained variation	ESS	p	$ ext{MSE} = rac{ ext{ESS}}{p}$	$F = rac{ ext{MSE}}{ ext{MSR}}$
residual variation	RSS	n-p-1	$\mathrm{MSR} = rac{\mathrm{RSS}}{n-p-1}$	
total variation	TSS	n-1		

$$R^2 = rac{\sum (\hat{y}_i - ar{y})^2}{\sum (y_i - ar{y})^2} = rac{\mathrm{ESS}}{\mathrm{TSS}} = 1 - rac{\mathrm{RSS}}{\mathrm{TSS}}$$

Hence: $0 \leq R^2 \leq 1$

$$R^2 = rac{\sum (\hat{y}_i - ar{y})^2}{\sum (y_i - ar{y})^2} = rac{\mathrm{ESS}}{\mathrm{TSS}} = 1 - rac{\mathrm{RSS}}{\mathrm{TSS}}$$

Hence: $0 \leq R^2 \leq 1$

Special case for $y = \beta_0 + \beta_1 x + \varepsilon$:

 $R^2 = r_{xy}^2$ (Pearson correlation coefficient)

$$R^2 = rac{\sum (\hat{y}_i - ar{y})^2}{\sum (y_i - ar{y})^2} = rac{\mathrm{ESS}}{\mathrm{TSS}} = 1 - rac{\mathrm{RSS}}{\mathrm{TSS}}$$

Hence: $0 \leq R^2 \leq 1$

Special case for $y = \beta_0 + \beta_1 x + \epsilon$:

 $R^2 = r_{xy}^2$ (Pearson correlation coefficient)

In multiple linear regression:

$$R^2 = r_{y\hat{y}}^2$$

 ${\it R}^2$ can only be used if

- models have the **same response** variable *y*,
- the number of regression coefficients is the same, and
- all models include an intercept.

 R^2 can only be used if

- models have the **same response** variable *y*,
- the number of regression coefficients is the same, and
- all models include an intercept.

Adjusted Coefficient of Determination

To **correct for the size** of the model:

$$R_{adj}^2 = 1 - rac{n-1}{n-p-1}(1-R^2)$$