Biostatistics I: Linear Regression

Hypothesis Tests & Model Fit

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

n.erler@erasmusmc.nl

y [@N_Erler](https://twitter.com/N_Erler)

Linear Regression Model:

$$
y_i = \mathbf{x}_i^\top \boldsymbol\beta + \varepsilon_i, \quad \mathrm{E}(\varepsilon_i) = 0, \quad \mathrm{var}(\varepsilon_i) = \sigma^2
$$

Estimation via OLS:

$$
\boldsymbol{\hat{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} \qquad \text{and} \qquad \hat{\sigma}^2 = \frac{1}{n-p-1} \boldsymbol{\hat{\varepsilon}}^\top \boldsymbol{\hat{\varepsilon}}
$$

1

$$
\mathrm{height}_i = \beta_0 + \beta_1 \mathrm{age}_i + \beta_2 \mathrm{sex}_i + \varepsilon_i
$$

$$
\mathrm{height}_i = \beta_0 + \beta_1 \mathrm{age}_i + \beta_2 \mathrm{sex}_i + \varepsilon_i
$$

How **confident** are we that the observed **difference is "real"?**

Because we have a (random) sample of the data, there is **always some difference, even when the true effect is zero**.

Because we have a (random) sample of the data, there is **always some difference, even when the true effect is zero**.

likely · When we know the distribution of $\hat{\boldsymbol{\beta}}$ we can calculate how (un)likely the observed difference is if there is no effect. unlikely no effect

Distribution of the OLS estimates:

$$
\mathsf{If} \ \varepsilon_i \sim N(0, \sigma^2) \qquad \qquad \hat{\boldsymbol{\beta}} \sim N\bigg(\boldsymbol{\beta}, \underbrace{\sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}}_{\text{var}(\hat{\boldsymbol{\beta}})}\bigg)
$$

Distribution of the OLS estimates:

$$
\mathsf{If} \ \varepsilon_i \sim N(0, \sigma^2) \qquad \qquad \hat{\boldsymbol{\beta}} \sim N\bigg(\boldsymbol{\beta}, \underbrace{\sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}}_{\text{var}(\hat{\boldsymbol{\beta}})} \bigg)
$$

${\bf Standardized\ effect}$ with ${\bf estimated\ variance}\ \hat{\sigma}_j$:

$$
\frac{\hat{\beta}_j-\beta_j}{\hat{\sigma}_j}\sim t(n-p-1),\quad j=0,\ldots,p
$$

 β_j is the (assumed) true value, σ_j is the standard deviation of ${\hat{\beta}}_j$

 $t(n-p-1)$ is the <code>Student's</code> t -distribution with $n-p-1$ degrees of freedom.

Research Question:

Does \mathbf{x}_j contribute (significantly) to the model (i.e., explain variation in \mathbf{y})?

Research Question:

Does \mathbf{x}_j contribute (significantly) to the model (i.e., explain variation in \mathbf{y})?

Corresponding hypothesis:

$$
H_0: \beta_j=0, \quad H_1: \beta_j \neq 0.
$$

In general:

$$
H_0: \beta_j=\beta_{0j}, \quad H_1: \beta_j \neq \beta_{0j}
$$

Research Question:

Does \mathbf{x}_j contribute (significantly) to the model (i.e., explain variation in \mathbf{y})?

Corresponding hypothesis:

$$
H_0: \beta_j=0, \quad H_1: \beta_j \neq 0.
$$

In general:

$$
H_0: \beta_j=\beta_{0j}, \quad H_1: \beta_j \neq \beta_{0j}
$$

The **test statistic** is the standardized regression coefficient

$$
T_j=\frac{\hat{\beta}_j-\beta_{0j}}{\hat{\sigma}_j},\quad j=0,\ldots,p.
$$

 H_0 : $\beta_j = \beta_{0j}$ H_1 : $\beta_j \neq \beta_{0j}$

null hypothesis alternative hypothesis rejection if

 $|T_j| > t_{1-\alpha/2}(n-p-1)$ $H_0 : \beta_j = \beta_{0j}$ $H_1 : \beta_j < \beta_{0j}$ $T_j < -t_{1-\alpha}(n-p-1)$ $H_0 : \beta_j = \beta_{0j}$ $H_1 : \beta_j > \beta_{0j}$ $T_j > t_{1-\alpha}(n-p-1)$

- $n = 108$
- $p = 2$
- $df = 108 2 1 = 105$

 $\alpha = 0.05$

$$
\bullet\ -t_{1-\alpha/2}=-1.98
$$

$$
\bullet \quad t_{1-\alpha/2} = \quad 1.98
$$

• $\hat{\beta}_2 = -2.14$ $\hat{\sigma}_2 = 0.94$ \bullet $\beta_{02}=0$ $T_2 = \frac{-2.14}{0.94} = -2.27$ 0.94

⇨**Reject** the null hypothesis that sex has no effect on height.

Confidence Interval

The (two-sided) $(1 - \alpha)100\%$ confidence interval for β_{0j} can be calculated as

$$
\left[\hat{\beta}_j-\hat{\sigma}_jt_{1-\alpha/2}(n-p-1),\quad \hat{\beta}_j+\hat{\sigma}_jt_{1-\alpha/2}(n-p-1)\right]
$$

by solving
$$
\left| \frac{\hat{\beta}_j - \beta_{0j}}{\hat{\sigma}_j} \right| > t_{1-\alpha/2}(n-p-1)
$$
 for β_{0j} .

Confidence Interval

The (two-sided) $(1 - \alpha)100\%$ confidence interval for β_{0j} can be calculated as

$$
\left[\hat{\beta}_j-\hat{\sigma}_jt_{1-\alpha/2}(n-p-1),\quad \hat{\beta}_j+\hat{\sigma}_jt_{1-\alpha/2}(n-p-1)\right]
$$

$$
\text{by solving } \left| \frac{\hat{\beta}_j - \beta_{0j}}{\hat{\sigma}_j} \right| > t_{1-\alpha/2} \big(n-p-1\big) \text{ for } \beta_{0j}.
$$

In our example:

The 95% confidence interval for β_2 is

 $[-2.14 - 0.94 \times 1.98, -2.14 + 0.94 \times 1.98] = [-4.01, -0.27]$

P-value

The **p-value** is the probability to obtain the observed parameter estimate or a more extreme value (into the direction of H_1) **under the null-hypothesis**.

 $p = 2 \min \{ \Pr(t \leq T \mid H_0), \, \Pr(t \geq T \mid H_0) \}$

In the example: $p = 2 \times 0.0127 = 0.0253$

Example: Child Growth (smaller sample)

How do things change if we had a **smaller sample**?

- $n=32$ \Rightarrow $\mathrm{df}=29$ • $t_{1-\alpha/2} = 2.05$ $\hat{\beta}_2 = -3.21$
	- $\overset{\circ}{\hat{\sigma}_2} = 1.97$
		- ⇨**Do not reject** the null hypothesis that sex has no effect on height.

 $T_2 = \frac{-3.21}{1.97} = -1.63$

1.97

Interpretation of Test Results

Example with $n = 108$:

"There is a difference in height between boys and girls."

Example with $n = 32$:

"There is no evidence for a difference in height between boys and girls."

Interpretation of Test Results

Example with $n = 108$:

"There is a difference in height between boys and girls."

Example with $n = 32$:

"There is no evidence for a difference in height between boys and girls."

Possible phrasing:

- "... height was associated with sex ..." or "... girls were 2.14cm shorter than boys ..."
- "... there was no evidence for an association between height and sex ..."
- "... we did not find an association between height and sex ..."

Do NOT use:

- "... there was no association/effect/difference ..."
- "... we found a non-significant association ..."
- "... with a trend towards significance ..."

Model Fit

How much of the variation in y is explained by the model?

Model Fit

How much of the variation in y is explained by the model?

total variation

residual variation

explained variation

covariate

covariate

covariate

Overall-F-Test (Goodness of Fit Test)

Simultaneous test for all regression coefficients:

$$
H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0, \qquad H_1: \beta_j \neq 0 \text{ for at least one } j.
$$

The **test statistic** of the Goodness of fit test is:

$$
F = \frac{\mathrm{ESS}}{\mathrm{RSS}}\frac{n-p-1}{p}
$$

Under H_0 :

$$
F\sim F(p,n-p-1)
$$

 \Rightarrow Reject the null hypothesis if $F>F_{1-\alpha}(p,n-p-1).$

Overall-F-Test (Goodness of Fit Test)

The test statistic F and sums of squares are often shown in an $\mathbf{analysis}$ of $\mathbf{variance}$ **table**:

$$
R^2=\frac{\sum(\hat{y}_i-\bar{y})^2}{\sum(y_i-\bar{y})^2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

Hence: $0\leq R^2\leq 1$

$$
R^2=\frac{\sum(\hat{y}_i-\bar{y})^2}{\sum(y_i-\bar{y})^2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

Hence: $0\leq R^2\leq 1$

Special case for $y = \beta_0 + \beta_1 x + \varepsilon$:

 R^2 $\frac{2}{r} = r_{x_2}^2$ $\frac{2}{xy} \quad \textrm{(Pearson correlation coefficient)}$

$$
R^2=\frac{\sum(\hat{y}_i-\bar{y})^2}{\sum(y_i-\bar{y})^2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

Hence: $0\leq R^2\leq 1$

Special case for $y = \beta_0 + \beta_1 x + \varepsilon$:

 R^2 $\frac{2}{r} = r_{x_2}^2$ $\frac{2}{xy} \quad \textrm{(Pearson correlation coefficient)}$

In multiple linear regression:

$$
R^2=r_{y\hat{y}}^2
$$

 \overline{R}^2 can only be used if

- models have the **same response** variable y,
- the **number of regression coefficients** is the same, and
- all models include an **intercept**.

 \overline{R}^2 can only be used if

- models have the **same response** variable y,
- the **number of regression coefficients** is the same, and
- all models include an **intercept**.

Adjusted Coefficient of Determination

To **correct for the size** of the model:

$$
R_{adj}^2 = 1 - \frac{n-1}{n-p-1}(1-R^2)
$$