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Linear Regression & Assumptions
Linear Regression Model:

 

We need to evaluate assumptions about

the error terms:

homoscedastic
uncorrelated
(normally distributed)

covariates and effects:

linear effects (i.e., linear in the parameters)
no (multi)collinearity between covariates

and check for outliers and in�uential observations.

yi = x
⊤
i β + εi, E(εi) = 0, var(εi) = σ2
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Visual Idendi�cation of Heteroscedasticity
Plot of standardized (or studentized) residuals against �tted values or covariates:

Homoscedastic
error terms: 
standardized 
(or studentized)
residuals are
randomly spread
around zero with
constant variability
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Visual Idendi�cation of Heteroscedasticity
Example: simulated data on child growth

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Visual Idendi�cation of Heteroscedasticity
Example: simulated data on child growth

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Visual Idendi�cation of Heteroscedasticity
Investigate which variables may be associated with the heteroscedasticity:
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Visual Idendi�cation of Heteroscedasticity
Plotting the square root of the absolute residuals can help to identify the shape of
the association between covariate and residual variance.

Here: Smooth line using LOESS (locally estimated scatterplot smoothing)
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Consequences of Heteroscedasticity

OLS estimator
remains unbiased
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Consequences of Heteroscedasticity

OLS estimator
remains unbiased

standard errors
are wrong
⇨no longer BLUE
⇨CIs & p-values

are wrong
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Approaches to Handle Heteroscedasticity

Variable Transformation
Idea: 
Change the model to imply heteroscedastic error terms, by using a transformation
of the response variable.

Weighted Least Squares
Idea: 
Change the estimation method to account for the heteroscedasticity of the error
terms.
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Variable Transformation
The model

implies multiplicative error terms, because

log(yi) = x
⊤
i

β + εi

yi = exp(x
⊤
i β + εi) = exp(x

⊤
i β) exp(εi)
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Variable Transformation
The model

implies multiplicative error terms, because

When , the terms  and  have a log-normal distribution.

⇨ The variance of  is

log(yi) = x
⊤
i

β + εi

yi = exp(x
⊤
i β + εi) = exp(x

⊤
i β) exp(εi)

εi ∼ N(0, σ2) exp(εi) yi

exp(εi)

var(exp(εi)) = exp(σ2)(exp(σ2) − 1)
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Variable Transformation
The variance of  is, hence,

i.e., the model with multiplicative error terms implies

heteroscedastic  (dependent on )

homoscedastic  (independent of )

yi

var(yi) = var (exp(x
⊤
i

β) exp(εi))

= exp(x
⊤
i

β)2var (exp(εi))

= exp(x
⊤
i

β)2 exp(σ2)(exp(σ2) − 1),

var(yi) xi

var(exp(εi)) i
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Variable Transformation: Example
We change our child growth model to

log(weighti) = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Variable Transformation: Example
We change our child growth model to

log(weighti) = β0 + β1agei + β2heighti + β3kcal_sdi + εi

11



Variable Transformation: Example
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Variable Transformation: Example
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Variable Transformation: Limitations
Because we are now �tting

we assume a non-linear association between response and covariates

⇨ if covariates have a linear association with the response the model is
misspeci�ed.

the interpretation of the regression coef�cients changes: 
 estimates the effect on 

log(yi) = x
⊤
i

β + εi,

βj log(weight)
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Transformation of the Response
Usually, the coef�cients have an additive interpretation:

yx = β0 + β1x

yx+1 = β0 + β1(x + 1)
} ⇒ yx+1 − yx = β1 ⇒ yx+1 = yx + β1
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Transformation of the Response
Usually, the coef�cients have an additive interpretation:

This changes when the response is transformed, e.g., with the (natural) logarithm:

yx = β0 + β1x

yx+1 = β0 + β1(x + 1)
} ⇒ yx+1 − yx = β1 ⇒ yx+1 = yx + β1

log(yx) = β0 + β1x

log(yx+1) = β0 + β1(x + 1)
} ⇒ log(yx+1) − log(yx) = log( ) = β1

yx+1

yx

⇒ yx+1 = yx exp(β1)

15



Transformation of the Response
Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a 1-unit increase in the covariate yields a  times
larger expected value of the response on the original scale.

exp(β1)
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Transformation of the Response
Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a 1-unit increase in the covariate yields a  times
larger expected value of the response on the original scale.

For  transformation:  

⇨For , a 1-unit increase in  results in a doubling of , for  in
multiplication of  with .

exp(β1)

log2 yx+1 = yx2β1

β1 = 1 x y β1 = 2

y 22 = 4
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Transformation of the Response
Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a 1-unit increase in the covariate yields a  times
larger expected value of the response on the original scale.

For  transformation:  

⇨For , a 1-unit increase in  results in a doubling of , for  in
multiplication of  with .

Many transformations do not have a straightforward interpretation with respect to
the response on its original scale:

exp(β1)

log2 yx+1 = yx2β1

β1 = 1 x y β1 = 2
y 22 = 4

√yx+1 − √yx = β1 ⇒ yx+1 = (√yx + β1)
2

= yx + 2√yxβ1 + β2
1
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Weighted Least Squares
Weighted Least Squares:

But:  is usually unknown ⇨ need to be estimated

N

∑
i=1

wiε
2
i
⟶ min

β
, with wi =

1

σ2
i

wi
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Weighted Least Squares
Weighted Least Squares:

But:  is usually unknown ⇨ need to be estimated

Practical Solution:

Get the heteroscedastic residuals  from an unweighted regression.
Model the residual variances  using .
Calculate weights  from the �tted values .

N

∑
i=1

wiε
2
i
⟶ min

β
, with wi =

1

σ2
i

wi

ε̂ i

σ2
i

ε̂ i

wi σ̂
2
i
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Weighted Least Squares
Because  we have

⇨ We can represent  using a linear model

i.e., model the squared residuals as their expected value  plus some noise .

E(εi) = 0

E(ε2
i
) = E(εi)E(εi)


=0

+ var(εi) = var(εi) = σ2
i

ε2
i

ε
2
i

= σ
2
i

+ vi,

(σ2
i
) vi
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Weighted Least Squares
Because  we have

⇨ We can represent  using a linear model

i.e., model the squared residuals as their expected value  plus some noise .

We assume that  depends on covariates and model it as

E(εi) = 0

E(ε2
i
) = E(εi)E(εi)


=0

+ var(εi) = var(εi) = σ2
i

ε2
i

ε2
i = σ2

i + vi,

(σ2
i
) vi

σ2
i

σ2
i = α0 + α1zi1 + … + αqziq = z

⊤
i α.
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Weighted Least Squares
Step 1 
Fit the unweighted linear regression  to get

estimates , and
calculate residuals 

yi = x⊤
i

β + εi

β̂

ε̂ i = yi − x
⊤
i β̂
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Weighted Least Squares
Step 1 
Fit the unweighted linear regression  to get

estimates , and
calculate residuals 

Step 2 
Fit the unweighted linear regression  and

get the estimates 
calculate weights 

Using these weights, we can then �t a weighted linear regression model for .

yi = x⊤
i

β + εi

β̂

ε̂ i = yi − x⊤
i β̂

ε̂
2
i = z⊤

i α + vi

α̂

ŵi = .
1

z⊤
i

α̂

y
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Weighted Least Squares: Example
Step 1: Get the residuals  from

Step 2: Fit the model

ε̂ i

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi

ε̂
2
i = α0 + α1agei + α2heighti + α3kcal_sdi



σ2
i

+ vi
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Weighted Least Squares: Example
Step 1: Get the residuals  from

Step 2: Fit the model

Problem:

ε̂ i

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi

ε̂
2
i = α0 + α1agei + α2heighti + α3kcal_sdi



σ2
i

+ vi

20



Weighted Least Squares: Update

To avoid negative �tted variances we assume  and �t the modelσ2
i

= exp(z
⊤
i

α)

log(ε̂
2
i
) = z

⊤
i

α + vi.
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Weighted Least Squares: Update

To avoid negative �tted variances we assume  and �t the model

The weights are then

and always positive.

σ2
i

= exp(z⊤
i

α)

log(ε̂
2
i
) = z⊤

i
α + vi.

ŵi =
1

exp(z⊤
i

α̂)
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Weighted Least Squares: Update

To avoid negative �tted variances we assume  and �t the model

The weights are then

and always positive.

Using  we can now use the weighted least squares estimator on the model of
interest:

σ2
i

= exp(z⊤
i

α)

log(ε̂2
i ) = z⊤

i
α + vi.

ŵi =
1

exp(z⊤
i

α̂)

wi

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Weighted Least Squares: Example
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Weighted Least Squares: Example
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Impact of Violation of Homoscedasticity
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