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Linear Regression & Assumptions
Linear Regression Model:

 

We need to evaluate assumptions about

the error terms:

homoscedastic
uncorrelated
(normally distributed)

covariates and effects:

linear effects (i.e., linear in the parameters)
no (multi)collinearity between covariates

and check for outliers and influential observations.

yi = x
⊤
i β + εi, E(εi) = 0, var(εi) = σ2
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Visual Idendification of Heteroscedasticity
Plot of standardized (or studentized) residuals against fitted values
or covariates:

Homoscedastic
error terms:

standardized

(or studentized)
residuals are
randomly
spread
around zero with
constant variability
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Visual Idendification of Heteroscedasticity
Example: simulated data on child growth

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Visual Idendification of Heteroscedasticity
Example: simulated data on child growth

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Visual Idendification of Heteroscedasticity
Investigate which variables may be associated with the heteroscedasticity:
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Visual Idendification of Heteroscedasticity
Plotting the square root of the absolute residuals can help to identify the
shape of
the association between covariate and residual variance.

Here: Smooth line using LOESS (locally estimated scatterplot smoothing)
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Consequences of Heteroscedasticity

OLS estimator
remains unbiased
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Consequences of Heteroscedasticity

OLS estimator
remains unbiased

standard errors
are wrong
⇨no longer BLUE
⇨CIs & p-values

are wrong
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Approaches to Handle Heteroscedasticity

Variable Transformation
Idea:

Change the model to imply heteroscedastic error terms, by using a transformation
of the response variable.

Weighted Least Squares
Idea:

Change the estimation method to account for the heteroscedasticity of the
error
terms.
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Variable Transformation
The model

implies multiplicative error terms, because

log(yi) = x
⊤
i

β + εi

yi = exp(x
⊤
i β + εi) = exp(x

⊤
i β) exp(εi)
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Variable Transformation
The model

implies multiplicative error terms, because

When , the terms  and
  have a log-normal distribution.

⇨ The variance of  is

log(yi) = x
⊤
i

β + εi

yi = exp(x
⊤
i β + εi) = exp(x

⊤
i β) exp(εi)

εi ∼ N(0, σ2) exp(εi) yi

exp(εi)

var(exp(εi)) = exp(σ2)(exp(σ2) − 1)
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Variable Transformation
The variance of  is, hence,

i.e., the model with multiplicative error terms implies

heteroscedastic 
(dependent on )

homoscedastic 
(independent of )

yi

var(yi) = var (exp(x
⊤
i

β) exp(εi))

= exp(x
⊤
i

β)2var (exp(εi))

= exp(x
⊤
i

β)2 exp(σ2)(exp(σ2) − 1),

var(yi) xi

var(exp(εi)) i
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Variable Transformation: Example
We change our child growth model to

log(weighti) = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Variable Transformation: Example
We change our child growth model to

log(weighti) = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Variable Transformation: Example
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Variable Transformation: Example
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Variable Transformation: Limitations
Because we are now fitting

we assume a non-linear association between response and covariates

⇨ if covariates have a linear association with the response the model is
misspecified.

the interpretation of the regression coefficients changes:

 estimates the effect on 

log(yi) = x
⊤
i

β + εi,

βj log(weight)
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Transformation of the Response
Usually, the coefficients have an additive interpretation:

yx = β0 + β1x

yx+1 = β0 + β1(x + 1)
} ⇒ yx+1 − yx = β1 ⇒ yx+1 = yx + β1
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Transformation of the Response
Usually, the coefficients have an additive interpretation:

This changes when the response is transformed, e.g., with the (natural)
logarithm:

yx = β0 + β1x

yx+1 = β0 + β1(x + 1)
} ⇒ yx+1 − yx = β1 ⇒ yx+1 = yx + β1

log(yx) = β0 + β1x

log(yx+1) = β0 + β1(x + 1)
} ⇒ log(yx+1) − log(yx) = log( ) = β1

yx+1

yx

⇒ yx+1 = yx exp(β1)
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Transformation of the Response
Transforming the response with the logarithm results in a multiplicative
effect.

For the natural logarithm, a 1-unit increase in the covariate yields a
  times
larger expected value of the
response on the original scale.

exp(β1)
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Transformation of the Response
Transforming the response with the logarithm results in a multiplicative
effect.

For the natural logarithm, a 1-unit increase in the covariate yields a
  times
larger expected value of the
response on the original scale.

For  transformation:
 


⇨For , a 1-unit increase in  results in a doubling of , for  in
multiplication of  with .

exp(β1)

log2 yx+1 = yx2β1

β1 = 1 x y β1 = 2

y 22 = 4
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Transformation of the Response
Transforming the response with the logarithm results in a multiplicative
effect.

For the natural logarithm, a 1-unit increase in the covariate yields a
  times
larger expected value of the
response on the original scale.

For  transformation:
 


⇨For , a 1-unit increase in  results in a doubling of , for  in
multiplication of  with .

Many transformations do not have a straightforward interpretation with
respect to
the response on its original scale:

exp(β1)

log2 yx+1 = yx2β1

β1 = 1 x y β1 = 2
y 22 = 4

√yx+1 − √yx = β1 ⇒ yx+1 = (√yx + β1)
2

= yx + 2√yxβ1 + β2
1
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Weighted Least Squares
Weighted Least Squares:

But:  is usually unknown ⇨ need to be estimated

N

∑
i=1

wiε
2
i
⟶ min

β
, with wi =

1

σ2
i

wi
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Weighted Least Squares
Weighted Least Squares:

But:  is usually unknown ⇨ need to be estimated

Practical Solution:

Get the heteroscedastic residuals  from an unweighted regression.
Model the residual variances  using .
Calculate weights  from the fitted values .

N

∑
i=1

wiε
2
i
⟶ min

β
, with wi =

1

σ2
i

wi

ε̂ i

σ2
i

ε̂ i

wi σ̂
2
i
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Weighted Least Squares
Because  we have

⇨ We can represent  using a linear model

i.e., model the squared residuals as their expected value  plus some noise .

E(εi) = 0

E(ε2
i
) = E(εi)E(εi)


=0

+ var(εi) = var(εi) = σ2
i

ε2
i

ε
2
i

= σ
2
i

+ vi,

(σ2
i
) vi
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Weighted Least Squares
Because  we have

⇨ We can represent  using a linear model

i.e., model the squared residuals as their expected value  plus some noise .

We assume that  depends on covariates and model it as

E(εi) = 0

E(ε2
i
) = E(εi)E(εi)


=0

+ var(εi) = var(εi) = σ2
i

ε2
i

ε2
i = σ2

i + vi,

(σ2
i
) vi

σ2
i

σ2
i = α0 + α1zi1 + … + αqziq = z

⊤
i α.
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Weighted Least Squares
Step 1

Fit the unweighted linear regression 
to get

estimates , and
calculate residuals 

yi = x⊤
i

β + εi

β̂

ε̂ i = yi − x
⊤
i β̂
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Weighted Least Squares
Step 1

Fit the unweighted linear regression 
to get

estimates , and
calculate residuals 

Step 2

Fit the unweighted linear regression
 
and

get the estimates 
calculate weights 

Using these weights, we can then fit a weighted linear regression model for .

yi = x⊤
i

β + εi

β̂

ε̂ i = yi − x⊤
i β̂

ε̂
2
i = z⊤

i α + vi

α̂

ŵi = .
1

z⊤
i

α̂

y
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Weighted Least Squares: Example
Step 1: Get the residuals  from

Step 2: Fit the model

ε̂ i

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi

ε̂
2
i = α0 + α1agei + α2heighti + α3kcal_sdi



σ2
i

+ vi
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Weighted Least Squares: Example
Step 1: Get the residuals  from

Step 2: Fit the model

Problem:

ε̂ i

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi

ε̂
2
i = α0 + α1agei + α2heighti + α3kcal_sdi



σ2
i

+ vi
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Weighted Least Squares: Update

To avoid negative fitted variances we assume
 
and fit the modelσ2
i

= exp(z
⊤
i

α)

log(ε̂
2
i
) = z

⊤
i

α + vi.
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Weighted Least Squares: Update

To avoid negative fitted variances we assume
 
and fit the model

The weights are then

and always positive.

σ2
i

= exp(z⊤
i

α)

log(ε̂
2
i
) = z⊤

i
α + vi.

ŵi =
1

exp(z⊤
i

α̂)
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Weighted Least Squares: Update

To avoid negative fitted variances we assume
 
and fit the model

The weights are then

and always positive.

Using  we can now use the weighted least squares estimator on the model
of
interest:

σ2
i

= exp(z⊤
i

α)

log(ε̂2
i ) = z⊤

i
α + vi.

ŵi =
1

exp(z⊤
i

α̂)

wi

weighti = β0 + β1agei + β2heighti + β3kcal_sdi + εi
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Weighted Least Squares: Example
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Weighted Least Squares: Example
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Impact of Violation of Homoscedasticity
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