Biostatistics I: Linear Regression

Model Diagnostics III: Heteroscedasticity

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

∑n.erler@erasmusmc.nl

♥ @N_Erler

Linear Regression & Assumptions

Linear Regression Model:

$$y_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i, \quad \mathrm{E}(arepsilon_i) = 0, \quad \mathrm{var}(arepsilon_i) = \sigma^2$$

We need to evaluate assumptions about

the error terms:

- homoscedastic
- uncorrelated
- (normally distributed)

covariates and effects:

- linear effects (i.e., linear in the parameters)
- no (multi)collinearity between covariates

and check for outliers and influential observations.

Plot of standardized (or studentized) residuals against fitted values or covariates:

Homoscedastic error terms:

standardized (or studentized) residuals are randomly spread around zero with constant variability

Example: simulated data on child growth

 $\text{weight}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{height}_i + \beta_3 \text{kcal_sd}_i + \varepsilon_i$

Example: simulated data on child growth

 $\text{weight}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{height}_i + \beta_3 \text{kcal_sd}_i + \varepsilon_i$

Investigate which variables may be associated with the heteroscedasticity:

Plotting the square root of the absolute residuals can help to identify the shape of the association between covariate and residual variance.

Here: Smooth line using LOESS (locally estimated scatterplot smoothing)

Consequences of Heteroscedasticity

Results from 1000 simulations:

 OLS estimator remains unbiased

Consequences of Heteroscedasticity

Results from 1000 simulations:

- OLS estimator remains **unbiased**
- standard errors are wrong
 ⇒ no longer BLUE
 ⇒ Cls & p-values are wrong

Approaches to Handle Heteroscedasticity

Variable Transformation

Idea:

Change the model to imply heteroscedastic error terms, by using a transformation of the response variable.

Weighted Least Squares

Idea:

Change the estimation method to account for the heteroscedasticity of the error terms.

Variable Transformation

The model

$$\log(y_i) = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i$$

implies multiplicative error terms, because

$$y_i = \exp(\mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i) = \exp(\mathbf{x}_i^ op oldsymbol{eta}) \exp(arepsilon_i)$$

Variable Transformation

The model

$$\log(y_i) = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i$$

implies multiplicative error terms, because

$$y_i = \exp(\mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i) = \exp(\mathbf{x}_i^ op oldsymbol{eta}) \exp(arepsilon_i)$$

When $\varepsilon_i \sim N(0, \sigma^2)$, the terms $\exp(\varepsilon_i)$ and y_i have a **log-normal distribution**. \Rightarrow The variance of $\exp(\varepsilon_i)$ is

$$ext{var}(ext{exp}(arepsilon_i)) = ext{exp}(\sigma^2)(ext{exp}(\sigma^2)-1)$$

Variable Transformation

The variance of y_i is, hence,

$$egin{aligned} ext{var}(y_i) &= ext{var}\left(\exp(\mathbf{x}_i^ op oldsymbol{eta}) \exp(arepsilon_i)
ight) \ &= \exp(\mathbf{x}_i^ op oldsymbol{eta})^2 ext{var}\left(\exp(arepsilon_i)
ight) \ &= \exp(\mathbf{x}_i^ op oldsymbol{eta})^2 \exp(\sigma^2)(\exp(\sigma^2)-1), \end{aligned}$$

i.e., the model with multiplicative error terms implies

- heteroscedastic $\mathrm{var}(y_i)$ (dependent on \mathbf{x}_i)
- homoscedastic $ext{var}(ext{exp}(arepsilon_i))$ (independent of i)

We change our child growth model to

 $\log(ext{weight}_i) = eta_0 + eta_1 ext{age}_i + eta_2 ext{height}_i + eta_3 ext{kcal_sd}_i + arepsilon_i$

We change our child growth model to

 $\log(ext{weight}_i) = eta_0 + eta_1 ext{age}_i + eta_2 ext{height}_i + eta_3 ext{kcal_sd}_i + arepsilon_i$

Variable Transformation: Limitations

Because we are now fitting

$$\log(y_i) = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i,$$

• we assume a **non-linear association** between response and covariates

⇒if covariates have a linear association with the response the model is **misspecified**.

• the **interpretation** of the regression coefficients **changes**: β_j estimates the effect on $\log(\text{weight})$

Usually, the coefficients have an **additive** interpretation:

$$egin{aligned} y_x &= eta_0 + eta_1 x \ y_{x+1} &= eta_0 + eta_1 (x+1) \end{aligned} iggle \Rightarrow y_{x+1} - y_x = eta_1 \quad \Rightarrow egin{aligned} y_{x+1} &= y_x + eta_1 \ y_{x+1} &= y_x + eta_1 \end{aligned}$$

Usually, the coefficients have an **additive** interpretation:

$$egin{aligned} y_x &= eta_0 + eta_1 x \ y_{x+1} &= eta_0 + eta_1 (x+1) \end{aligned} ightiggerightiggerighting y_{x+1} &= eta_1 & \Rightarrow y_{x+1} = y_x + eta_1 \end{aligned}$$

This changes when the response is **transformed**, e.g., with the (natural) **logarithm**:

$$egin{aligned} \log(y_x) &= eta_0 + eta_1 x \ \log(y_{x+1}) &= eta_0 + eta_1(x+1) \end{aligned} igglerightarrow \log(y_{x+1}) - \log(y_x) &= \logiggl(rac{y_{x+1}}{y_x}iggr) = eta_1 \ &\Rightarrow y_{x+1} = y_x \exp(eta_1) \end{aligned}$$

Transforming the response with the logarithm results in a **multiplicative effect**.

For the natural logarithm, a **1-unit increase** in the covariate yields a $\exp(\beta_1)$ times larger expected value of the response on the original scale.

Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a **1-unit increase** in the covariate yields a $\exp(\beta_1)$ times larger expected value of the response on the original scale.

For \log_2 transformation: $y_{x+1} = y_x 2^{eta_1}$

 \Rightarrow For $eta_1=1$, a 1-unit increase in x results in a doubling of y, for $eta_1=2$ in multiplication of y with $2^2=4$.

Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a **1-unit increase** in the covariate yields a $\exp(\beta_1)$ times larger expected value of the response on the original scale.

For \log_2 transformation: $y_{x+1} = y_x 2^{eta_1}$

 \Rightarrow For $eta_1=1$, a 1-unit increase in x results in a doubling of y, for $eta_1=2$ in multiplication of y with $2^2=4$.

Many transformations do not have a straightforward interpretation with respect to the response on its original scale:

$$\sqrt{y_{x+1}} - \sqrt{y_x} = eta_1 \quad \Rightarrow y_{x+1} = \left(\sqrt{y_x} + eta_1
ight)^2 = y_x + 2\sqrt{y_x}eta_1 + eta_1^2$$

$$\sum_{i=1}^N w_i arepsilon_i^2 \longrightarrow \min_{oldsymbol{eta}}, \qquad ext{with } w_i = rac{1}{\sigma_i^2}$$

But: w_i is usually unknown \Rightarrow need to be estimated

$$\sum_{i=1}^N w_i arepsilon_i^2 \longrightarrow \min_{oldsymbol{eta}}, \qquad ext{with } w_i = rac{1}{\sigma_i^2}$$

But: w_i is usually unknown \Rightarrow need to be estimated

Practical Solution:

- Get the heteroscedastic residuals $\hat{\varepsilon}_i$ from an unweighted regression.
- Model the residual variances σ_i^2 using $\hat{\varepsilon}_i$.
- Calculate weights w_i from the fitted values $\hat{\sigma}_i^2$.

Because $\mathrm{E}(arepsilon_i)=0$ we have

$$\mathrm{E}(arepsilon_i^2) = \underbrace{\mathrm{E}(arepsilon_i)\mathrm{E}(arepsilon_i)}_{=0} + \mathrm{var}(arepsilon_i) = \mathrm{var}(arepsilon_i) = \sigma_i^2$$

 \Rightarrow We can represent ε_i^2 using a linear model

$$arepsilon_i^2 = \sigma_i^2 + v_i,$$

i.e., model the squared residuals as their expected value (σ_i^2) plus some noise v_i .

Because $\mathrm{E}(arepsilon_i)=0$ we have

$$\mathrm{E}(arepsilon_i^2) = \underbrace{\mathrm{E}(arepsilon_i)\mathrm{E}(arepsilon_i)}_{=0} + \mathrm{var}(arepsilon_i) = \mathrm{var}(arepsilon_i) = \sigma_i^2$$

 \Rightarrow We can represent ε_i^2 using a linear model

$$arepsilon_i^2 = \sigma_i^2 + v_i,$$

i.e., model the squared residuals as their expected value (σ_i^2) plus some noise v_i .

We assume that σ_i^2 depends on covariates and model it as

$$\sigma_i^2 = lpha_0 + lpha_1 z_{i1} + \ldots + lpha_q z_{iq} = \mathbf{z}_i^ op oldsymbol{lpha}.$$

Step 1

Fit the unweighted linear regression $y_i = \mathbf{x}_i^{ op} \boldsymbol{eta} + arepsilon_i$ to get

- estimates $\hat{oldsymbol{eta}}$, and
- calculate residuals $\hat{arepsilon}_i = y_i \mathbf{x}_i^ op oldsymbol{\hat{eta}}$

Step 1

Fit the unweighted linear regression $y_i = \mathbf{x}_i^ op oldsymbol{eta} + arepsilon_i$ to get

- estimates $\hat{oldsymbol{eta}}$, and
- calculate residuals $\hat{arepsilon}_i = y_i \mathbf{x}_i^ op oldsymbol{\hat{eta}}_i$

Step 2

Fit the unweighted linear regression $\hat{arepsilon}_i^2 = \mathbf{z}_i^ op oldsymbol{lpha} + v_i$ and

- get the estimates $\hat{oldsymbol{lpha}}$
- calculate weights $\hat{w}_i = rac{1}{\mathbf{z}_i^{ op} \hat{oldsymbol{lpha}}}.$

Using these weights, we can then fit a weighted linear regression model for \mathbf{y} .

Weighted Least Squares: Example

Step 1: Get the residuals $\hat{\varepsilon}_i$ from

$$ext{weight}_i = eta_0 + eta_1 ext{age}_i + eta_2 ext{height}_i + eta_3 ext{kcal_sd}_i + arepsilon_i$$

Step 2: Fit the model

$$\hat{arepsilon}_{i}^{2} = \underbrace{lpha_{0} + lpha_{1} \mathrm{age}_{i} + lpha_{2} \mathrm{height}_{i} + lpha_{3} \mathrm{kcal_sd}_{i}}_{\sigma_{i}^{2}} + v_{i}$$

Weighted Least Squares: Example

Step 1: Get the residuals $\hat{\varepsilon}_i$ from

$$ext{weight}_i = eta_0 + eta_1 ext{age}_i + eta_2 ext{height}_i + eta_3 ext{kcal_sd}_i + arepsilon_i$$

Step 2: Fit the model

$$\hat{arepsilon}_{i}^{2} = \underbrace{lpha_{0} + lpha_{1} \mathrm{age}_{i} + lpha_{2} \mathrm{height}_{i} + lpha_{3} \mathrm{kcal_sd}_{i} + v_{i}}_{\sigma_{i}^{2}}$$

Problem:

Weighted Least Squares: Update

To avoid negative fitted variances we assume $\sigma_i^2 = \exp(\mathbf{z}_i^ op \boldsymbol{lpha})$ and fit the model

$$\log(\hat{arepsilon}_i^2) = \mathbf{z}_i^ op oldsymbol{lpha} + v_i.$$

Weighted Least Squares: Update

To avoid negative fitted variances we assume $\sigma_i^2 = \exp(\mathbf{z}_i^ op \boldsymbol{lpha})$ and fit the model

$$\log(\hat{arepsilon}_{i}^{2}) = \mathbf{z}_{i}^{ op} oldsymbol{lpha} + v_{i}.$$

The **weights** are then

$$\hat{w}_i = rac{1}{\exp(\mathbf{z}_i^ op oldsymbol{\hat{lpha}})}$$

and always positive.

Weighted Least Squares: Update

To avoid negative fitted variances we assume $\sigma_i^2 = \exp(\mathbf{z}_i^ op m{lpha})$ and fit the model

$$\log(\hat{arepsilon}_{i}^{2}) = \mathbf{z}_{i}^{ op} oldsymbol{lpha} + v_{i}.$$

The **weights** are then

$$\hat{w}_i = rac{1}{\exp(\mathbf{z}_i^ op m{\hat{lpha}})}$$

and always positive.

Using w_i we can now use the **weighted least squares estimator** on the model of interest:

$$\mathrm{weight}_i = \beta_0 + \beta_1 \mathrm{age}_i + \beta_2 \mathrm{height}_i + \beta_3 \mathrm{kcal_sd}_i + \varepsilon_i$$

Weighted Least Squares: Example

Weighted Least Squares: Example

Impact of Violation of Homoscedasticity

