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Linear Regression & Assumptions

Linear Regression Model:

yi =x, B+ei, E(g)=0, var(e)=o"

We need to evaluate assumptions about

the error terms: covariates and effects:

e linear effects (i.e, linear in the parameters)

e« homoscedastic . ‘ . !
e no (Mmulti)collinearity between covariates

e uncorrelated
e (normally distributed)

and check for outliers and influential observations.



Visual Idendification of Heteroscedasticity

Plot of standardized (or studentized) residuals against fitted values or covariates:
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Visual Idendification of Heteroscedasticity

Example: simulated data on child growth

weight, = By + Biage, + Bzheight, + Bskcal_sd; + ¢;



Visual Idendification of Heteroscedasticity

Example: simulated data on child growth

weight, = By + Biage, + Baheight, + Bskcal_sd; + ¢;

_— ) — @
- 4 * =
- : < °
- n
2 e o © e o —
O 2 @ O
v ®e® ‘0
0] g5
e 990 e We ¥ o0 O%OO® 0
_O O » Q( ;;‘;:.)“‘?3\ 0 e “-"- 4‘ \ “". _—— - = = 7 _C)
Q 8 4.~ 4}\ i L% ( |, (2l O Q
N o a8 O ekt P° %o 0
= O et g o o® ——
© @OO @) +
- &
S o §5‘% © 0e% ¢’ 5
O - ® 9 oo
C O o © ) O
© e © 2
0 . "
10 20 30 40 50 60 10 20 30 40 50 60

fitted values fitted values



Visual Idendification of Heteroscedasticity

Investigate which variables may be associated with the heteroscedasticity:

N
o)

N
o)

IN
o)

standardized residuals
standardized residuals
standardized residuals

N 0 1
kcal_sd




Visual Idendification of Heteroscedasticity

Plotting the square root of the absolute residuals can help to identify the shape of

the association between covariate and residual variance.

2.0 2.0
o
1.5 i ® o 1.5
@ % o]
_ 20" o ¢ —
O \l;o\ §: /0017 ‘O' )
= 10 %\,vﬁ@ g = 10
S (ﬁg‘b@ lﬁ‘ 2 ;7§ $ o
Y 289 > 2 § fé‘r
05- & of Bag SRS g @ © 0.5
. ®
%(JB > wlq e
a e &%
4 8 2 16
age

2.0

1.5

0.5

Here: Smooth line using LOESS (locally estimated scatterplot smoothing)



Consequences of Heteroscedasticity

Estimate

Results from 1000 simulations:
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Consequences of Heteroscedasticity

Results from 1000 simulations:
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Approaches to Handle Heteroscedasticity

Variable Transformation

Idea:

Change the model to imply heteroscedastic error terms, by using a transformation
of the response variable.

Weighted Least Squares

Idea:

Change the estimation method to account for the heteroscedasticity of the error
terms.



Variable Transformation

The model
log(y;) = x; B+ ¢
implies multiplicative error terms, because

yi = exp(x; B+ &) = exp(x, B) exp(e;)



Variable Transformation

The model
log(y;) = x; B+ ¢
implies multiplicative error terms, because

yi = exp(x; B+ &) = exp(x, B) exp(e;)

When ¢; ~ N(0,0?), the terms exp(g;) and y; have a log-normal distribution.

= The variance of exp(¢;) is

var(exp(e;)) = exp(c?)(exp(c?) — 1)



Variable Transformation

The variance of y; is, hence,

var(y;) = var (e p(x, B) ex P(gi))
= exp(x; B)*var (exp(e;))
xp(o

= exp(x] B)” exp(c°)(exp(o
l.e., the model with multiplicative error terms implies

* heteroscedastic var(y;) (dependent on X;)
« homoscedastic var(exp(g;)) (independent of )

)_1)7
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Variable Transformation: Example

We change our child growth model to

log(weight,) = By + B1age, + Boheight, + Bskcal_sd; + ¢;
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Variable Transformation: Example

We change our child growth model to

log(weight,) = By + B1age; + Baheight, + Bskcal_sd; + ¢;
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Variable Transformation: Example

original model| model for log(weight)
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Variable Transformation: Example

2.0 - original = 2.0 - original g 2.0 - original
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Variable Transformation: Limitations

Because we are now fitting
log(y;) = x, B+ &

e We assume a nhon-linear association between response and covariates
= If covariates have a linear association with the response the model is
misspecified.

e the interpretation of the regression coefficients changes:
B; estimates the effect on log(weight)
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Transformation of the Response

Usually, the coefficients have an additive interpretation:

Yz = BO ‘|_51w

— Yz 1_y:c:ﬁ1 —= Yz 1:yx‘|_51
Yz+1 _50+51($‘|‘1)} ' i
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Transformation of the Response

Usually, the coefficients have an additive interpretation:

Yz = BO —|—61$

— Yz 1_y:c:51 —= Yz 1:yx+51
Yz+1 _504—51(5’5"‘1)} ' i

This changes when the response is transformed, e.g., with the (natural) logarithm:

log(y,) = Bo + bz
log(yz+1) = Bo + Bi(z + 1)

} = log(yx+1) — log(ya:) — log( y;—l—l ) — 51

= Yp+1 = Yz exp(B1)
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Transformation of the Response

Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a 1-unit increase in the covariate yields a exp(3;) times
larger expected value of the response on the original scale.
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Transformation of the Response

Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a 1-unit increase in the covariate yields a exp(3;) times
larger expected value of the response on the original scale.

For log, transformation: y,.; = yx251

= For 81 = 1, a 1-unit increase in x results in a doubling of y, for 8; = 2 in
multiplication of y with 2 = 4.
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Transformation of the Response

Transforming the response with the logarithm results in a multiplicative effect.

For the natural logarithm, a 1-unit increase in the covariate yields a exp(3;) times
larger expected value of the response on the original scale.

For log, transformation: y,.; = yx251

= For 81 = 1, a 1-unit increase in x results in a doubling of y, for 8; = 2 in
multiplication of y with 2 = 4.

Many transformations do not have a straightforward interpretation with respect to
the response on its original scale:

2
VY91 — Yz =B1 = Y1 = (\/y_zc + 51) = Yo +2,/U:01 + B
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Weighted Least Squares

Weighted Least Squares:

N 1
E ’wi&‘? — min, with w; = —5
i—1 B g;

But: w; is usually unknown = need to be estimated



Weighted Least Squares

Weighted Least Squares:

N

9 : : 1
E w;€; — Imin, with w; = —
i=1 p g;

But: w; is usually unknown = need to be estimated

Practical Solution:

e Get the heteroscedastic residuals €; from an unweighted regression.

e Model the residual variances az.z using €;.

e Calculate weights w; from the fitted values &2

Z'.



Weighted Least Squares

Because E(g;) = 0 we have

E(e?) = E(¢;)E(e;) + var(e;) = var(e;) = o7

1
" J/

=0

= We can represent 6,? using a linear model|

2 2 .
€z _O-Z _I_,Uz,

i.e., model the squared residuals as their expected value (aiz) plus some noise v;.
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Weighted Least Squares

Because E(g;) = 0 we have

E(e?) = E(¢;)E(e;) + var(e;) = var(e;) = o7

1
" J/

=0
= We can represent 6,? using a linear model|

2 2 .
6’& _O-’L _I_,Uz,

i.e., model the squared residuals as their expected value (07;2) plus some noise v;.

We assume that 03 depends on covariates and model it as

o2 =ap+arzg+ ...+ a2y =z, Q.
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Weighted Least Squares

Step 1
Fit the unweighted linear regression y; = xiT,B + ¢; to get

e estimates 3, and

A

e calculate residuals é; = y; — x; B
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Weighted Least Squares

Step 1
Fit the unweighted linear regression y; = xz.T,B + ¢; to get

e estimates 3, and

A

e calculate residuals é; = y; — x; B

Step 2

Fit the unweighted linear regression é? — 7/

; @+ v; and

e get the estimates &

e calculate weights w; = —

TA

Using these weights, we can then fit a weighted linear regression model for y.

19



Weighted Least Squares: Example

Step 1: Get the residuals €; from
weight, = By + Biage, + Bzheight, + Bskcal_sd; + ¢;

Step 2: Fit the model

A

£; = ag + ajage; + asheight, + askcal_sd; 4 v;

1

~~

9
g;
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Weighted Least Squares: Example

Step 1: Get the residuals €; from

weight, = By + Biage, + Bzheight, + Bskcal_sd; + ¢;
Step 2: Fit the model

£; = ag + ajage; + asheight, + askcal_sd; 4 v;

~~

9
g;

Problem:
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Weighted Least Squares: Update

To avoid negative fitted variances we assume o? = exp(z, a) and fit the model

log(¢;) =z ¢ + ;.
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Weighted Least Squares: Update

To avoid negative fitted variances we assume 02.2 = exp

log(¢;) =z ¢ + ;.

The weights are then

and always positive.

(

zz.Ta

) and fit the model
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Weighted Least Squares: Update

To avoid negative fitted variances we assume o? = exp(z, a) and fit the model
log(¢;) =z ¢ + ;.

The weights are then

and always positive.

Using w; we can now use the weighted least squares estimator on the model of
INnterest:

weight, = By + Biage, + Baheight, + Bskcal_sd; + ¢;
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Weighted Least Squares: Example

weighted least squares
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Weighted Least Squares: Example

original model weighted least squares
2.0
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Impact of Violation of Homoscedasticity

Estimate

Std. Error
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