Biostatistics I: Linear Regression

Model Diagnostics III: Heteroscedasticity

Nicole S. Erler

Department of Biostatistics, Erasmus Medical Center

n.erler@erasmusmc.nl

y [@N_Erler](https://twitter.com/N_Erler)

Linear Regression & Assumptions

Linear Regression Model:

$$
y_i = \mathbf{x}_i^\top \boldsymbol\beta + \varepsilon_i, \quad \mathrm{E}(\varepsilon_i) = 0, \quad \mathrm{var}(\varepsilon_i) = \sigma^2
$$

We need to **evaluate assumptions** about

the **error terms:**

- **covariates and effects:**
- linear effects (i.e., linear in the parameters)
	- no (multi)collinearity between covariates

1

- homoscedastic
- uncorrelated
- (normally distributed)

and check for **outliers and influential observations**.

Plot of standardized (or studentized) residuals against fitted values or covariates:

Homoscedastic error terms:

standardized (or studentized) residuals are randomly spread around zero with constant variability

Example: simulated data on child growth

 $\text{weight}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{height}_i + \beta_3 \text{kcal_sd}_i + \varepsilon_i$

Example: simulated data on child growth

 $\text{weight}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{height}_i + \beta_3 \text{kcal_sd}_i + \varepsilon_i$

Investigate which variables may be associated with the heteroscedasticity:

Plotting the square root of the absolute residuals can help to identify the shape of the association between covariate and residual variance.

Here: Smooth line using LOESS (locally estimated scatterplot smoothing)

Consequences of Heteroscedasticity

Results from 1000 simulations:

OLS estimator remains **unbiased**

Consequences of Heteroscedasticity

Results from 1000 simulations:

- **OLS** estimator remains **unbiased**
- **standard errors** are **wrong** ⇨no longer BLUE \Rightarrow Cls & p-values are **wrong**

Approaches to Handle Heteroscedasticity

Variable Transformation

Idea:

Change the model to imply heteroscedastic error terms, by using a transformation of the response variable.

Weighted Least Squares

Idea:

Change the estimation method to account for the heteroscedasticity of the error terms.

Variable Transformation

The model

$$
\log(y_i) = \mathbf{x}_i^\top \bm{\beta} + \varepsilon_i
$$

implies **multiplicative error terms**, because

$$
y_i = \exp(\mathbf{x}_i^\top \boldsymbol\beta + \varepsilon_i) = \exp(\mathbf{x}_i^\top \boldsymbol\beta)\exp(\varepsilon_i)
$$

Variable Transformation

The model

$$
\log(y_i) = \mathbf{x}_i^\top \bm{\beta} + \varepsilon_i
$$

implies **multiplicative error terms**, because

$$
y_i = \exp(\mathbf{x}_i^\top \boldsymbol\beta + \varepsilon_i) = \exp(\mathbf{x}_i^\top \boldsymbol\beta)\exp(\varepsilon_i)
$$

When $\varepsilon_i \sim N(0,\sigma^2)$, the terms $\exp(\varepsilon_i)$ and y_i have a **log-normal distribution**. \Rightarrow The variance of $\exp(\varepsilon_i)$ is

$$
\text{var}(\exp(\varepsilon_i))=\exp(\sigma^2)(\exp(\sigma^2)-1)
$$

Variable Transformation

The variance of y_i is, hence,

$$
\begin{aligned} \text{var}(y_i) &= \text{var}\left(\text{exp}(\mathbf{x}_i^\top \boldsymbol{\beta}) \, \text{exp}(\varepsilon_i)\right) \\ &= \text{exp}(\mathbf{x}_i^\top \boldsymbol{\beta})^2 \text{var}\left(\text{exp}(\varepsilon_i)\right) \\ &= \text{exp}(\mathbf{x}_i^\top \boldsymbol{\beta})^2 \, \text{exp}(\sigma^2) (\text{exp}(\sigma^2) - 1), \end{aligned}
$$

i.e., the model with multiplicative error terms implies

- <code>heteroscedastic</code> $\text{var}(y_i)$ (dependent on \mathbf{x}_i)
- homoscedastic $\text{var}(\text{exp}(\varepsilon_i))$ (independent of i)

We change our child growth model to

 $\log({\rm weight}_i) = \beta_0 + \beta_1 {\rm age}_i + \beta_2 {\rm height}_i + \beta_3 {\rm kcal_sd}_i + \varepsilon_i$

We change our child growth model to

 $\log({\rm weight}_i) = \beta_0 + \beta_1 {\rm age}_i + \beta_2 {\rm height}_i + \beta_3 {\rm kcal_sd}_i + \varepsilon_i$

Variable Transformation: Limitations

Because we are now fitting

$$
\log(y_i) = \mathbf{x}_i^\top \bm{\beta} + \varepsilon_i,
$$

we assume a **non-linear association** between response and covariates

 \Rightarrow if covariates have a linear association with the response the model is **misspecified**.

the **interpretation** of the regression coefficients **changes**: β_j estimates the effect on $\log(\mathrm{weight})$

Usually, the coefficients have an **additive** interpretation:

$$
\left.\begin{array}{c}y_x=\beta_0+\beta_1x\\y_{x+1}=\beta_0+\beta_1(x+1)\end{array}\right\}\Rightarrow y_{x+1}-y_x=\beta_1\quad\Rightarrow y_{x+1}=y_x+\beta_1
$$

Usually, the coefficients have an **additive** interpretation:

$$
\left.\begin{array}{l}y_x=\beta_0+\beta_1x\\y_{x+1}=\beta_0+\beta_1(x+1)\end{array}\right\}\Rightarrow y_{x+1}-y_x=\beta_1\quad\Rightarrow y_{x+1}=y_x+\beta_1
$$

This changes when the response is **transformed**, e.g., with the (natural) **logarithm**:

$$
\begin{aligned} \log(y_x) &= \beta_0 + \beta_1 x \\ \log(y_{x+1}) &= \beta_0 + \beta_1 (x+1) \end{aligned} \bigg\} \Rightarrow \log(y_{x+1}) - \log(y_x) = \log\biggl(\frac{y_{x+1}}{y_x}\biggr) = \beta_1
$$

Transforming the response with the logarithm results in a **multiplicative effect**.

For the natural logarithm, a **1-unit increase** in the covariate yields a $\exp(\beta_1)$ **times larger expected value** of the response on the original scale.

Transforming the response with the logarithm results in a **multiplicative effect**.

For the natural logarithm, a **1-unit increase** in the covariate yields a $\exp(\beta_1)$ **times larger expected value** of the response on the original scale.

For \log_2 **transformation**: $y_{x+1} = y_x 2^{\beta_1}$

 \Rightarrow For $\beta_1 = 1$, a 1-unit increase in x results in a doubling of y , for $\beta_1 = 2$ in multiplication of y with $2^2=4$.

Transforming the response with the logarithm results in a **multiplicative effect**.

For the natural logarithm, a **1-unit increase** in the covariate yields a $\exp(\beta_1)$ **times larger expected value** of the response on the original scale.

For \log_2 **transformation**: $y_{x+1} = y_x 2^{\beta_1}$

⇔For $\beta_1 = 1$, a 1-unit increase in x results in a doubling of y , for $\beta_1 = 2$ in multiplication of y with $2^2 = 4$.

Many transformations do not have a straightforward interpretation with respect to the response on its original scale:

$$
\sqrt{y_{x+1}}-\sqrt{y_x}=\beta_1\quad\Rightarrow y_{x+1}=\left(\sqrt{y_x}+\beta_1\right)^2=y_x+2\sqrt{y_x}\beta_1+\beta_1^2
$$

$$
\sum_{i=1}^N w_i \varepsilon_i^2 \longrightarrow \min_{\boldsymbol{\beta}} , \qquad \text{with } w_i = \frac{1}{\sigma_i^2}
$$

But: w_i is usually unknown \Rightarrow need to be estimated

$$
\sum_{i=1}^N w_i \varepsilon_i^2 \longrightarrow \min_{\boldsymbol{\beta}} , \qquad \text{with } w_i = \frac{1}{\sigma_i^2}
$$

But: w_i is usually unknown \Rightarrow need to be estimated

Practical Solution:

- Get the heteroscedastic residuals $\hat{\varepsilon}_i$ from an unweighted regression.
- Model the residual variances σ_i^2 using $\hat{\varepsilon}_i$. $\frac{2}{i}$ using $\hat{\varepsilon}_i$
- Calculate weights w_i from the fitted values $\hat{\sigma}_i^2.$ \bar{i}

Because $\mathrm{E}(\varepsilon_{i})=0$ we have

$$
\mathrm{E}(\varepsilon_i^2)=\underbrace{\mathrm{E}(\varepsilon_i)\mathrm{E}(\varepsilon_i)}_{=0}+\mathrm{var}(\varepsilon_i)=\mathrm{var}(\varepsilon_i)=\sigma_i^2
$$

 \Rightarrow We can represent ε_i^2 using a linear model \bar{i}

$$
\varepsilon_i^2 = \sigma_i^2 + v_i,
$$

i.e., **model the squared residuals** as their expected value (σ_i^2) plus some noise v_i . $\binom{2}{i}$ plus some noise v_i

Because $\mathrm{E}(\varepsilon_{i})=0$ we have

$$
\mathrm{E}(\varepsilon_i^2)=\underbrace{\mathrm{E}(\varepsilon_i)\mathrm{E}(\varepsilon_i)}_{=0}+\mathrm{var}(\varepsilon_i)=\mathrm{var}(\varepsilon_i)=\sigma_i^2
$$

 \Rightarrow We can represent ε_i^2 using a linear model i

$$
\varepsilon_i^2 = \sigma_i^2 + v_i,
$$

i.e., **model the squared residuals** as their expected value (σ_i^2) plus some noise $v_i.$ $\binom{2}{i}$ plus some noise v_i

We assume that σ_i^2 depends on covariates and model it as i

$$
\sigma_i^2 = \alpha_0 + \alpha_1 z_{i1} + \ldots + \alpha_q z_{iq} = \mathbf{z}_i^{\top} \boldsymbol{\alpha}.
$$

Step 1

Fit the unweighted linear regression $y_i = \mathbf{x}_i^{\top} \boldsymbol{\beta} + \varepsilon_i$ to get

- estimates $\boldsymbol{\hat{\beta}}$, and
- calculate residuals $\hat{\varepsilon}_i = y_i \mathbf{x}_i^{\top} \boldsymbol{\hat{\beta}}$

Step 1

Fit the unweighted linear regression $y_i = \mathbf{x}_i^{\top} \boldsymbol{\beta} + \varepsilon_i$ to get

- estimates $\boldsymbol{\hat{\beta}}$, and
- calculate residuals $\hat{\varepsilon}_i = y_i \mathbf{x}_i^{\top} \boldsymbol{\hat{\beta}}$

Step 2

Fit the unweighted linear regression $\hat{\varepsilon}_{i}^2 = \mathbf{z}_{i}^{\top}\boldsymbol{\alpha} + v_{i}$ and

- get the estimates $\boldsymbol{\hat{\alpha}}$
- calculate weights $\hat{w}_i = \frac{1}{\mathbf{z}^\top \hat{\mathbf{\alpha}}}.$ $\overline{\mathbf{z}_i^{\top}\hat{\boldsymbol{\alpha}}}$

Using these weights, we can then fit a weighted linear regression model for \mathbf{y} .

Weighted Least Squares: Example

Step 1: Get the residuals $\hat{\varepsilon}_i$ from

$$
\text{weight}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{height}_i + \beta_3 \text{kcal_sd}_i + \varepsilon_i
$$

Step 2: Fit the model

$$
\hat{\varepsilon}_i^2 = \underbrace{\alpha_0 + \alpha_1 \mathrm{age}_i + \alpha_2 \mathrm{height}_i + \alpha_3 \mathrm{kcal_sd}_i}_{\sigma_i^2} + v_i
$$

Weighted Least Squares: Example

Step 1: Get the residuals $\hat{\varepsilon}_i$ from

$$
\text{weight}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{height}_i + \beta_3 \text{kcal_sd}_i + \varepsilon_i
$$

Step 2: Fit the model

$$
\hat{\varepsilon}_i^2 = \underbrace{\alpha_0 + \alpha_1 \mathrm{age}_i + \alpha_2 \mathrm{height}_i + \alpha_3 \mathrm{kcal_sd}_i}_{\sigma_i^2} + v_i
$$

Problem:

Weighted Least Squares: Update

To **avoid negative fitted variances** we assume $\sigma_i^2 = \exp(\mathbf{z}_i^\top \boldsymbol{\alpha})$ and fit the model

$$
\log(\hat{\varepsilon}_i^2) = \mathbf{z}_i^\top\boldsymbol{\alpha} + v_i.
$$

Weighted Least Squares: Update

To **avoid negative fitted variances** we assume $\sigma_i^2 = \exp(\mathbf{z}_i^\top \boldsymbol{\alpha})$ and fit the model

$$
\log(\hat{\varepsilon}_i^2) = \mathbf{z}_i^\top\boldsymbol{\alpha} + v_i.
$$

The **weights** are then

$$
\hat{w}_i = \frac{1}{\exp(\mathbf{z}_i^\top \boldsymbol{\hat{\alpha}})}
$$

and **always positive**.

Weighted Least Squares: Update

To **avoid negative fitted variances** we assume $\sigma_i^2 = \exp(\mathbf{z}_i^\top \boldsymbol \alpha)$ and fit the model

$$
\log(\hat{\varepsilon}_i^2) = \mathbf{z}_i^\top\boldsymbol{\alpha} + v_i.
$$

The **weights** are then

$$
\hat{w}_i = \frac{1}{\exp(\mathbf{z}_i^\top \boldsymbol{\hat{\alpha}})}
$$

and **always positive**.

Using w_i we can now use the **weighted least squares estimator** on the model of interest:

$$
\text{weight}_i = \beta_0 + \beta_1 \text{age}_i + \beta_2 \text{height}_i + \beta_3 \text{kcal_sd}_i + \varepsilon_i
$$

Weighted Least Squares: Example

Weighted Least Squares: Example

Impact of Violation of Homoscedasticity

