
Biostatistics II:
Introduction to R
Control Flow and Functions

Nicole S. Erler
Department of Biostatistics, Erasmus Medical Center

 n.erler@erasmusmc.nl
 @N_Erler

mailto:n.erler@erasmusmc.nl
https://twitter.com/N_Erler

Avoiding Repetition
Sometimes we want to perform a particular action/manipulation multiple times
and/or on several objects.

For example,

plot the standardized residuals against each of the covariates,
extract certain elements from a �tted model and create a results table,
calculate a particular transformation of multiple variables.

1

Option 1:

Copy & Paste

a lot of work
susceptible to mistakes

Option 2:

Functions and/or Loops

Avoiding Repetition
Sometimes we want to perform a particular action/manipulation multiple times
and/or on several objects.

For example,

plot the standardized residuals against each of the covariates,
extract certain elements from a �tted model and create a results table,
calculate a particular transformation of multiple variables.

1

Iteration: Loops
To repeat the same action

for each element of a vector, a list, ..., or
while a particular condition is ful�lled

we can specify a loop.

2

The for-loop

The for-loop evaluates an expression for each element in a sequence.

It has the structure:
for (var in seq) {
 expr
}

var: the name of a variable that acts as the index
seq: the sequence of values var takes
expr: an "expression", i.e., a piece of syntax

3

for (i in 1:5) {
 print(i)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

The for-loop

The for-loop evaluates an expression for each element in a sequence.

It has the structure:
for (var in seq) {
 expr
}

var: the name of a variable that acts as the index
seq: the sequence of values var takes
expr: an "expression", i.e., a piece of syntax

For example:

3

for (i in 1:5) {
 print(i)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

for (i in 1:5) {
 print('test')
}

[1] "test"
[1] "test"
[1] "test"
[1] "test"
[1] "test"

The for-loop

The for-loop evaluates an expression for each element in a sequence.

It has the structure:
for (var in seq) {
 expr
}

var: the name of a variable that acts as the index
seq: the sequence of values var takes
expr: an "expression", i.e., a piece of syntax

For example:

3

The for-loop

The index variable var can be any character string.
The sequence seq can be any sequence of numeric values, strings, objects, ...

For example, we could have loops with

for (index in c(1, 5, 9, 3))
for (month in c("January", "February", "March", "April"))
for (variable_name in seq_along(names(mydata)))
for (elmt in fitted_model)
where fitted_model is a �tted model object

4

The for-loop

Loops return the value NULL:
for (var in names(nhanes)) {
 is.numeric(nhanes[[var]])
}

5

The for-loop

Loops return the value NULL:
for (var in names(nhanes)) {
 is.numeric(nhanes[[var]])
}

print() will send the output to the console (but only if it is last in the expression):
for (var in names(nhanes)) {
 print(is.numeric(nhanes[[var]]))
}

[1] TRUE
[1] FALSE
[1] TRUE
[1] FALSE
[1] TRUE
[1] FALSE
[...]

5

The for-loop

We can save the output in a pre-speci�ed object:
variable_numeric <- logical(ncol(nhanes))
names(variable_numeric) <- names(nhanes)

variable_numeric

SBP gender age race WC alc educ creat
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [...]

6

The for-loop

We can save the output in a pre-speci�ed object:
variable_numeric <- logical(ncol(nhanes))
names(variable_numeric) <- names(nhanes)

variable_numeric

SBP gender age race WC alc educ creat
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [...]

for (var in names(nhanes)) {
 variable_numeric[var] <- is.numeric(nhanes[[var]])
}

variable_numeric

SBP gender age race WC alc educ creat
TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE [...]

6

The while-loop

The while-loop repeatedly evaluates an expression while a condition is ful�lled:

while (cond) {
 expr
}

cond: a length-one logical vector that is not NA.
expr: an "expression", i.e., a piece of syntax

7

The while-loop

The while-loop repeatedly evaluates an expression while a condition is ful�lled:

while (cond) {
 expr
}

cond: a length-one logical vector that is not NA.
expr: an "expression", i.e., a piece of syntax

Careful!
If your condition is never FALSE this will run forever!!! (or until you stop it manually)

7

Runs forever:
i <- 0
while(i < 5) {
 print(i)
}

Stops after 5 iterations:
i <- 0
while(i < 5) {
 i <- i + 1
 print(i)
}

The while-loop

The while-loop repeatedly evaluates an expression while a condition is ful�lled:

while (cond) {
 expr
}

cond: a length-one logical vector that is not NA.
expr: an "expression", i.e., a piece of syntax

Careful!
If your condition is never FALSE this will run forever!!! (or until you stop it manually)

7

The while-loop: Example

Example: Use a while-loop to perform a power calculation.

Set-up starting values:
N <- 100 ## sample size
power <- power.t.test(n = N, delta = 0.2, sd = 1, sig.level = 0.05)$power

8

The while-loop: Example

Example: Use a while-loop to perform a power calculation.

Set-up starting values:
N <- 100 ## sample size
power <- power.t.test(n = N, delta = 0.2, sd = 1, sig.level = 0.05)$power

While the power is less than 0.8, increase N by 10 and re-calculate:
while (power < 0.8) {
 N <- N + 10
 power <- power.t.test(n = N, delta = 0.2, sd = 1, sig.level = 0.05)$power
}

8

N

[1] 400

power

[1] 0.8065

The while-loop: Example

Example: Use a while-loop to perform a power calculation.

Set-up starting values:
N <- 100 ## sample size
power <- power.t.test(n = N, delta = 0.2, sd = 1, sig.level = 0.05)$power

While the power is less than 0.8, increase N by 10 and re-calculate:
while (power < 0.8) {
 N <- N + 10
 power <- power.t.test(n = N, delta = 0.2, sd = 1, sig.level = 0.05)$power
}

The resulting sample size and power:

8

Conditional Evaluation: if()

Sometimes, we may want to execute code only if a certain condition is ful�lled.

if (cond) {
 expr
}

cond: a length-one logical vector that is not NA.
expr: an "expression", i.e., a piece of syntax

If the condition is not ful�lled, NULL is returned.

9

if (is.numeric(nhanes$SBP)) {
 mean(nhanes$SBP, na.rm = TRUE)
}

[1] 119.3

if (is.numeric(nhanes$gender)) {
 mean(nhanes$gender, na.rm = TRUE)
}

Conditional Evaluation: if()

Sometimes, we may want to execute code only if a certain condition is ful�lled.

if (cond) {
 expr
}

cond: a length-one logical vector that is not NA.
expr: an "expression", i.e., a piece of syntax

If the condition is not ful�lled, NULL is returned.

Example:
Calculate the mean of a variable in a dataset only if the variable is numeric:

9

Conditional Evaluation: if()

The example makes more sense in combination with a for-loop:
nhanes_means <- list()

for (var in names(nhanes)) {

 nhanes_means[var] <- if (is.numeric(nhanes[[var]])) {

 mean(nhanes[[var]], na.rm = TRUE)

 }

}

unlist(nhanes_means)

SBP age WC creat albu uricacid bili
119.2957 43.5108 94.9989 0.8438 4.3455 5.3528 0.7208

10

Conditional Evaluation: if() ... else

We can also specify an expression that is evaluated if the condition is not ful�lled:
if (cond) {
 cons.expr
} else {
 alt.expr
}

11

Conditional Evaluation: if() ... else

We can also specify an expression that is evaluated if the condition is not ful�lled:
if (cond) {
 cons.expr
} else {
 alt.expr
}

For example:
if (is.numeric(nhanes[[var]])) {

 mean(nhanes[[var]], na.rm = TRUE)

} else {

 unique(nhanes[[var]])

}

11

Conditional Evaluation: if() ... else

nhanes_summary <- list()

for (var in names(nhanes)) {

 nhanes_summary[[var]] <- if (is.numeric(nhanes[[var]])) {

 mean(nhanes[[var]], na.rm = TRUE)

 } else {

 unique(nhanes[[var]])
 }
}

nhanes_summary

$SBP
[1] 119.3

$gender
[1] male female
Levels: male female
[...]

12

Conditional Element Selection: ifelse()

A similar function is ifelse(), which performs conditional element selection:

ifelse(test, yes, no) test: a logical vector
yes: return values for TRUE elements of test
no: return values for FALSE elements of test

13

Conditional Element Selection: ifelse()

A similar function is ifelse(), which performs conditional element selection:

ifelse(test, yes, no) test: a logical vector
yes: return values for TRUE elements of test
no: return values for FALSE elements of test

For example:
ifelse(nhanes$gender == "male", nhanes$WC, nhanes$WC * 1.1)

[1] 99.00 82.70 104.39 82.40 93.10 105.40 88.00 99.11 133.60 105.82
[11] 100.60 105.82 90.20 93.00 94.60 124.00 91.00 112.00 102.30 110.00 [...]

Note:

cond in if() ... else is a single TRUE or FALSE
test in ifelse() is a vector of TRUE and FALSE values

13

Conditional Element Selection: ifelse()

The arguments yes and no can be vectors or lists:

ifelse(test = c(TRUE, FALSE, FALSE),
 yes = c("ABC", "DEF", "GHI"),
 no = list("abc", "def", c("g", "h", "i")))

[[1]]
[1] "ABC"

[[2]]
[1] "def"

[[3]]
[1] "g" "h" "i"

14

Conditional Element Selection: ifelse()

The arguments yes and no can be vectors or lists:

ifelse(test = c(TRUE, FALSE, FALSE),
 yes = c("ABC", "DEF", "GHI"),
 no = list("abc", "def", c("g", "h", "i")))

[[1]]
[1] "ABC"

[[2]]
[1] "def"

[[3]]
[1] "g" "h" "i"

If yes and/or no are shorter than test, they are recycled:
ifelse(test = c(TRUE, FALSE, FALSE, TRUE, FALSE, TRUE),
 yes = "yes",
 no = c("1st", "2nd", "3rd"))

[1] "yes" "2nd" "3rd" "yes" "2nd" "yes"

14

Functions
What are functions?

a group of (organized) commands
a (small) program with �exible (= not pre-speci�ed) input

15

mean()
sum()
plot()
...

class(mean)
[1] "function"
class(sum)
[1] "function"
class(plot)
[1] "function"

Functions
What are functions?

a group of (organized) commands
a (small) program with �exible (= not pre-speci�ed) input

Almost all commands in are functions!

Some examples:

15

Writing Functions
To write your own function:

function(arglist) {
 expr
}

arglist: one or more names of arguments
(optional)
expr: an "expression", i.e., a piece of syntax

16

Writing Functions
To write your own function:

function(arglist) {
 expr
}

arglist: one or more names of arguments
(optional)
expr: an "expression", i.e., a piece of syntax

For example:
square <- function(x) {
 x^2
}

square(3)

[1] 9

16

Writing Functions: Arguments
Functions do not always need an argument:
random <- function() {
 rnorm(n = 1)
}

random()
[1] 0.4471

17

Writing Functions: Arguments
Functions do not always need an argument:
random <- function() {
 rnorm(n = 1)
}

random()
[1] 0.4471

Functions can have multiple arguments:
difference <- function(x, y) {
 x - y
}

difference(x = 5.2, y = 3.3)

[1] 1.9

17

Writing Functions: Arguments
Multiple arguments are interpreted in the pre-de�ned order, unless they are
named:
difference(5.2, 1.2)

[1] 4

is equivalent to
difference(x = 5.2, y = 1.2)

[1] 4

18

Writing Functions: Arguments
Multiple arguments are interpreted in the pre-de�ned order, unless they are
named:
difference(5.2, 1.2)

[1] 4

is equivalent to
difference(x = 5.2, y = 1.2)

[1] 4

But this is different:
difference(y = 5.2, x = 1.2)

[1] -4

18

Writing Functions: Arguments
We can also de�ne default values for arguments.
multiply <- function(x, y = 2) {
 x * y
}

The default value is used when the user does not specify a value for that argument:
multiply(x = 3, y = 3)

[1] 9

multiply(x = 3)

[1] 6

19

Writing Functions: Example
summarize_data <- function(dataset) {

 smry_list <- list()

 for (var in names(dataset)) {

 smry_list[[var]] <- if (is.numeric(dataset[[var]])) {

 mean(dataset[[var]], na.rm = TRUE)

 } else {

 unique(dataset[[var]])
 }
 }

 # return the result
 smry_list
}

20

summarize_data(nhanes)

$SBP
[1] 119.3

$gender
[1] male female
Levels: male female

$age
[1] 43.51

$race
[1] Non-Hispanic Black Other Hispanic
[3] Non-Hispanic White other
[5] Mexican American
5 Levels: Mexican American ... other
[...]

summarize_data(airquality)

$Ozone
[1] 42.13

$Solar.R
[1] 185.9

$Wind
[1] 9.958

$Temp
[1] 77.88

$Month
[1] 6.993

[...]

Writing Functions: Example

21

