BST02: Using R for Statistics in Medical Research

Part D: Statistics with R

Nicole Erler
Department of Biostatistics, Erasmus Medical Center

-n.erler@erasmusmc.nl

In this Section

- Common statistical tests
- for continuous data
- for categorical data
- (Generalized) linear regression
- Useful functions for regression models
- Modelling non-linear effects

t-test: t.test()

One-sample t-test

- compares the mean of one sample with a fixed value μ

t-test: t.test()

One-sample t-test

- compares the mean of one sample with a fixed value μ

Two sample / independent samples t-test

- compares the difference between the means of two samples with a fixed value μ

t-test: t.test()

One-sample t-test

- compares the mean of one sample with a fixed value μ

Two sample / independent samples t-test

- compares the difference between the means of two samples with a fixed value μ

Related samples t-test

- compares the mean of the difference between related observations with a fixed value μ (same as one-sample t-test)

Wilcoxon Test: wilcox.test()

Wilcoxon Signed Rank Test

- tests if one sample (or the difference between two paired samples) is symmetric about μ

Wilcoxon Test: wilcox.test()

Wilcoxon Signed Rank Test

- tests if one sample (or the difference between two paired samples) is symmetric about μ

Wilcoxon Rank Sum Test / Mann-Whitney test

- test for a location shift between the distributions of two independent samples

See also BBR Sections $7.2 \& 7.3$ (http://hbiostat.org/doc/bbr.pdf)

Kruskal-Wallis Rank Sum Test: kruskal.test()

- extension of the Wilcoxon rank sum test for more than two groups
- test for a difference in location of a continuous variable between multiple groups
- the Wilcoxon rank sum test is a special case of the Kruskal-Wallis rank sum test

Other Tests for Continuous Data

- Kolmogorov-Smirnov Test: ks.test() tests if two samples are drawn from the same continuous distribution
- Shapiro-Wilk Normality Test: shapiro.test()
- Friedman Rank Sum Test: friedman.test () non-parametric test for two or more related samples

Tests for Continuous Data

Demo
 - Tests for Continuous Data R html

Tests for Categorical Data / Proportions

One-sample Proportion Test

- tests if the proportion in one sample is equal to a fixed value p
- prop.test() and binom.test()

Tests for Categorical Data / Proportions

One-sample Proportion Test

- tests if the proportion in one sample is equal to a fixed value p
- prop.test() and binom.test()

Tests for Proportions in Multiple (independent) Groups

- tests if the proportions in several samples are equal
- chisq.test() and fisher.test() (when there are cells with O)

See also BBR Sections 5.7 \& 6 (http://hbiostat.org/doc/bbr.pdf)

Tests for Categorical Data / Proportions

Related Samples: McNemar Test

- Tests for symmetry in a 2×2 table
- menemar.test()

Tests for Categorical Data / Proportions

Related Samples: McNemar Test

- Tests for symmetry in a 2×2 table
- menemar.test()

3-Dimensional Contingency Table

- Cochrane-Mantel-Haenszel Test
- χ^{2} test for independence of two nominal variables within each stratum
- mantelhaen.test()

Tests for Categorical Data

Demo

- Tests for Categorical Data R html

Practical
- Statistical Tests html

Useful Functions: Statistical Tests

```
Continuous
Outcomes
- t.test()
- wilcox.test()
- kruskal.test()
- ks.test()
- friedman.test()
- shapiro.test()
```

Categorical Outcomes

- prop.test()
- binom.test()
- chisq.test()
- fisher.test()
- mcnemar.test()
- mantelhaen.test()

Pairwise tests

- pairwise.prop.test()
- pairwise.t.test()
- pairwise.wilcox.test()

Variance and

 Correlation- cor.test()
- bartlett.test()
- var.test()

Multiple Testing

 Adjustment- p.adjust()

Linear Regression

A standard linear regression model has the form

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}+\varepsilon \quad \text { with } \quad \varepsilon \sim N\left(0, \sigma^{2}\right)
$$

where

- y is the outcome variable ("dependent variable")
- x_{1}, \ldots, x_{p} are the covariates ("independent variables")
- $\beta_{0}, \ldots, \beta_{p}$ are the regression coefficients
- β_{0} is the intercept
- $\beta_{1}, \ldots, \beta_{p}$ estimate the effects of the covariates
- ε is a vector of error terms, which we assume to be (approximately) normally distributed.

Linear Regression

To fit a linear regression in R we use the function 1 m() .

The most important arguments are

- formula:
a formula object
- data:
a data.frame (optional, but usually needed)
- subset:
a vector specifying which observations should be used (optional) (works like the subset argument of the function subset ())

Model Formula

A formula object has the form
outcome ~ linear predictor
for example
y ~ x1 + x2 + x3

Model Formula

A formula object has the form
outcome ~ linear predictor
for example
y ~ x1 + x2 + x3

- Variables are separated by "+" signs.
- An intercept is automatically included.
- One-sided formulas (omitting the outcome) are possible (used for random effects specification).

Model Formula: Interactions

Interaction terms are written using ":" or "*".
"*" includes the main effects and interaction terms, i.e.,
y ~ x 1 * x 2
is equivalent to
$y \sim x 1+x 2+x 1: x 2$

Model Formula: Interactions

Interaction terms are written using ":" or "*".
"*" includes the main effects and interaction terms, i.e.,
y ~ x 1 * x 2
is equivalent to
$y \sim x 1+x 2+x 1: x 2$

Interactions between multiple variables can be written using "()", i.e.,
y ~ x 1 * ($\mathrm{x} 2+\mathrm{x} 3$)
is equivalent to
y ~ x1 * $\mathrm{x} 2+\mathrm{x} 1$ * x 3

Model Formula: Interactions

To specify a higher level interaction "^" is used.
For example:
$y \sim(x 1+x 2+x 3)^{\wedge} 3$
will create all interactions up to 3-way and is equivalent to y ~ x 1 * x 2 * x 3
and equivalent to
$\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 1: \mathrm{x} 2+\mathrm{x} 1: \mathrm{x} 3+\mathrm{x} 2: \mathrm{x} 3+\mathrm{x} 1: \mathrm{x} 2: \mathrm{x} 3$

Model Formula: Interactions

To specify a higher level interaction "^" is used.
For example:
$y \sim(x 1+x 2+x 3)^{\wedge} 3$
will create all interactions up to 3 -way and is equivalent to y ~ x 1 * x 2 * x 3
and equivalent to
y ~ $\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 1: \mathrm{x} 2+\mathrm{x} 1: \mathrm{x} 3+\mathrm{x} 2: \mathrm{x} 3+\mathrm{x} 1: \mathrm{x} 2: \mathrm{x} 3$
and
$y \quad \sim(x 1+x 2+x 3)^{\wedge} 2$
will create all two-way interactions and is equivalent to
y ~ $x 1+x 2+x 3+x 1: x 2+x 1: x 3+x 2: x 3$

Model Formula: Removing Terms

The "-" sign can be used to remove terms from a model formula.
For example
y ~ x1 * x2 * x3 - x2 - x1:x3
is equivalent to
y ~ $x 1+x 3+x 1: x 2+x 2: x 3+x 1: x 2: x 3$

Model Formula: Removing Terms

The "-" sign can be used to remove terms from a model formula.
For example
y ~ x1 * x2 * x3 - x2 - x1:x3
is equivalent to
y ~ $x 1+x 3+x 1: x 2+x 2: x 3+x 1: x 2: x 3$

The intercept can be removed from a formula by using " -1 " or "+0", i.e.
y ~ x1 + x2 - 1
y ~ x1 + x2 + 0

Generalized Linear Regression (GLM)

A generalized linear regression model has the form

$$
g(\mathbb{E}(y))=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}
$$

where $g()$ is a link function and y is from the exponential family.

Generalized Linear Regression (GLM)

A generalized linear regression model has the form

$$
g(\mathbb{E}(y))=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}
$$

where $g()$ is a link function and y is from the exponential family.

For example logistic regression for binary y :

$$
\log \left(\frac{P(y=1)}{1-P(y=1)}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}
$$

$\log \left(\frac{p}{1-p}\right)$ is the logit link.

Generalized Linear Regression (GLM)

To fit a GLM in R we use the function glm().

The most important arguments are

- formula:
a formula object
- family:
a family object or name of the family function, describing the error distribution and link function
- data:
a data.frame (optional, but usually needed)
- subset:
a vector specifying which observations should be used (optional)

Families and Link Functions

Common families \& available links in R :

family	link
binomial	logit, probit, cauchit, log, cloglog
gaussian	identity, log, inverse
Gamma	inverse, identity, log
poisson	log, identity, sqrt

Families and Link Functions

Common families \& available links in R :

family	link
binomial	logit, probit, cauchit, log, cloglog
gaussian	identity, log, inverse
Gamma	inverse, identity, log
poisson	log, identity, sqrt

The family argument in glm() can be specified in the following ways:

- binomial(link = "logit")
- binomial()
- binomial
- "binomial"

Families and Link Functions

Common families \& available links in R :

family	link
binomial	logit, probit, cauchit, log, cloglog
gaussian	identity, log, inverse
Gamma	inverse, identity, log
poisson	log, identity, sqrt

The family argument in glm() can be specified in the following ways:

- binomial(link = "logit")
- binomial()
- binomial
- "binomial"

Note:

When the link is not explicitly specified (i.e. options 2-4), the default link is used.

Regression

Demo
 - Regression Basics

Practical

- Linear Regression html

Model Evaluation

Linear model:

Evaluate the assumptions of a linear regression model visually, for example:

- Histogram of residuals
- Normal QQ-plot of residuals
- Scatter plot residuals vs fitted values

Model Comparison

Nested models:

- model is a special case of the other, i.e.,
- model B is a special case of model A when B can be obtained by setting some regression coefficients in A to zero

Comparison using a likelihood ratio (LR) test, for example:
anova(modelA, modelB)
anova(modelA, modelB, test $=$ "LRT") \# for a glm

Model Comparison

Nested models:

- model is a special case of the other, i.e.,
- model B is a special case of model A when B can be obtained by setting some regression coefficients in A to zero

Comparison using a likelihood ratio (LR) test, for example:
anova(modelA, modelB)
anova(modelA, modelB, test = "LRT") \# for a glm

Non-nested models:

Comparison using information criteria, e.g.
AIC(modelA, modelB)
BIC(modelA, modelB)

The model with the smaller AIC (or BIC) has the better fit.

Model Evaluation

Demo

- Model Evaluation R html

Non-linear Effects

Default assumption: linear effect, i.e., $\quad x \rightarrow y \quad \Rightarrow \quad x+1 \rightarrow y+\beta, \quad \forall x$

Non-linear Effects

Default assumption: linear effect, i.e., $x \rightarrow y \quad x \quad x+1 \rightarrow y+\beta, \quad \forall x$
This may not always be the case:

Non-linear Effects

Here, we would like to allow the effect of a one-unit increase of \mathbf{x} to change with the value of x :

Non-linear Effects

Sometimes, we can use

- a transformation of \mathbf{x}, or
- x as well as a polynomial of x (or a transformation).

For example:

$y \sim x+I\left(x^{\wedge} 2\right)$
or
$y \sim \log (x)$

Non-linear Effects: I()

The function I() is needed to distinguish between operators that need to be interpreted as

- arithmetic operators and
- formula operators

Non-linear Effects: I ()

The function I() is needed to distinguish between operators that need to be interpreted as

- arithmetic operators and
- formula operators

Example:
$y \sim I(a+b)$
would be the same as
z <- a + b
y ~ z
but not the same as
$y \sim a+b$

Complex Non-linear Effects

Non-linear effects may be more complex than can be modelled with a simple transformation or polynomial.

Also: the shape may depend on other covariates in the model \Rightarrow we do not always know the shape in advance
\Rightarrow Regression Splines / B-Splines

B-Splines

A B-Spline is a linear combination of a set of basis functions.
These basis functions are defined so that they are

- a polynomial functions inside a given interval, and
- zero outside that interval.

The intervals are defined by a set of knots.
The polynomial function have a certain degree (i.e., constant, linear, quadratic, ...)

B-Splines

A B-Spline is a linear combination of a set of basis functions.
These basis functions are defined so that they are

- a polynomial functions inside a given interval, and
- zero outside that interval.

The intervals are defined by a set of knots.
The polynomial function have a certain degree (i.e., constant, linear, quadratic, ...)

B-Splines in \mathbf{R}

The R package splines provides the functions

- bs(): B-splines
- ns(): natural cubic (B-)splines

B-Splines

Instead of $y \sim \beta_{0}+\beta_{1} x+\ldots \quad$ we assume $y \sim \beta_{0}+\sum_{\ell=1}^{d} \beta_{\ell} B_{\ell}(x)+\ldots$

B-Splines

Instead of $y \sim \beta_{0}+\beta_{1} x+\ldots \quad$ we assume $y \sim \beta_{0}+\sum_{\ell=1}^{d} \beta_{\ell} B_{\ell}(x)+\ldots$

B-Splines

Instead of $y \sim \beta_{0}+\beta_{1} x+\ldots \quad$ we assume $y \sim \beta_{0}+\sum_{\ell=1}^{d} \beta_{\ell} B_{\ell}(x)+\ldots$

B-Splines

Instead of $y \sim \beta_{0}+\beta_{1} x+\ldots \quad$ we assume $y \sim \beta_{0}+\sum_{\ell=1}^{d} \beta_{\ell} B_{\ell}(x)+\ldots$

B-Splines: degree

B-Splines: df

B-Splines: df

B-Splines in R: bs () \& ns()

Important arguments of ns() and bs() are:
degree

- degree of the polynomial in each of the basis functions
- in bs (): default is 3
- in ns(): always 3 ("cubic")

B-Splines in R: bs() \& ns()

Important arguments of ns() and bs() are:
degree

- degree of the polynomial in each of the basis functions
- in bs (): default is 3
- in ns(): always 3 ("cubic")
df
- degrees of freedom, i.e., "number of regression coefficients" used
- for bs(): has to be \geq degree

B-Splines in R: bs () \& ns()

Important arguments of ns() and bs() are:
degree

- degree of the polynomial in each of the basis functions
- in bs (): default is 3
- in ns (): always 3 ("cubic")

knots

- position of (inner) knots
- if unspecified:
- df-degree knots are used
- positioned at equally spaced quantiles
df
- degrees of freedom, i.e., "number of regression coefficients" used
- for bs(): has to be \geq degree

B-Splines in R: bs () \& ns()

Important arguments of ns() and bs() are:
degree

- degree of the polynomial in each of the basis functions
- in bs(): default is 3
- in ns(): always 3 ("cubic")
knots
- position of (inner) knots
- if unspecified:
- df-degree knots are used
- positioned at equally spaced quantiles

Boundary.knots

- by default: range (x)
- outside the Boundary. knots the fit is extrapolated

Non-linear Effects

```
Practicals
    - Logistic Regression & More html
    - Logistic Regression II html
    - Custom Model Summary Function html
```


Regression

Regression Models

- $\operatorname{lm}()$
- glm()

Regression Results

- summary()
- coef(), confint()
- fitted(), residuals(), rstandard()
- AIC(), BIC()
- anova()

Plots

- plot()
- qqnorm(), qqline(), qqplot()

Formulas

- Formula operators: +, -, *, :,
- ns(), bs(), I()
- all.vars()
- update()
- as.formula()

